Marine Radar Constant False Alarm Rate Detection in Generalized Extreme Value Distribution Based on Space-Time Adaptive Filtering Clutter Statistical Analysis
"> Figure 1
<p>Interpolated original radar range-azimuth map: (<b>a</b>) The first set data (wave height 2.65 m). (<b>b</b>) The second set data (wave height 2.83 m). (<b>c</b>) The third set data (wave height 3.18 m).</p> "> Figure 2
<p>The background clutter statistical distribution in the original radar range-azimuth map: (<b>a</b>) PDF distribution for the whole area, near area, and far area under the three datasets. (<b>b</b>) CDF distribution for the whole area, near area, and far area under the three datasets.</p> "> Figure 3
<p>The processed radar range-azimuth map. (<b>a</b>) The first set data (wave height 2.65 m). (<b>b</b>) The second set data (wave height 2.83 m). (<b>c</b>) The third set data (wave height 3.18 m).</p> "> Figure 4
<p>The statistical background clutter distribution in the processed range-azimuth map: (<b>a</b>) PDF distribution for the whole area, near area, and far area under the three datasets. (<b>b</b>) CDF distribution for the whole area, near area, and far area under the three datasets.</p> "> Figure 5
<p>PDF and CDF plots: the processed data, estimated Weibull, K, Log-normal, KK, WW, Generalized Pareto, and Generalized Extreme Value distribution. (<b>a</b>,<b>b</b>) The first set data (wave height 2.65 m). (<b>c</b>,<b>d</b>) The second set data (wave height 2.83 m). (<b>e</b>,<b>f</b>) The third set data (wave height 3.18 m).</p> "> Figure 6
<p>The errors of PDF and CDF: estimated Weibull, K, Log-normal, KK, WW, Generalized Pareto, and Generalized Extreme Value. (<b>a</b>,<b>b</b>) The first set data (wave height 2.65 m). (<b>c</b>,<b>d</b>) The second set data (wave height 2.83 m). (<b>e</b>,<b>f</b>) The third set data (wave height 3.18 m).</p> "> Figure 6 Cont.
<p>The errors of PDF and CDF: estimated Weibull, K, Log-normal, KK, WW, Generalized Pareto, and Generalized Extreme Value. (<b>a</b>,<b>b</b>) The first set data (wave height 2.65 m). (<b>c</b>,<b>d</b>) The second set data (wave height 2.83 m). (<b>e</b>,<b>f</b>) The third set data (wave height 3.18 m).</p> "> Figure 7
<p>Schematic diagram of CRP-CFAR detection principle.</p> "> Figure 8
<p>The extracted real moving target data: (<b>a</b>) The target in the 1st image of the sequence. (<b>b</b>) The target in the 15th image of the sequence. (<b>c</b>) The target in the 32nd image of the sequence.</p> "> Figure 9
<p>The detection results of seven detectors in first datasets: (<b>a</b>) Truth image. (<b>b</b>) OS-CFAR. (<b>c</b>) TMOS-CFAR. (<b>d</b>) GMOS-CFAR. (<b>e</b>) WH-CFAR. (<b>f</b>) WHOS-CFAR. (<b>g</b>) IE-CFAR. (<b>h</b>) LOGT-CFAR.</p> "> Figure 10
<p>The detection results of seven detectors in the second datasets: (<b>a</b>) Truth image. (<b>b</b>) OS-CFAR. (<b>c</b>) TMOS-CFAR. (<b>d</b>) GMOS-CFAR. (<b>e</b>) WH-CFAR. (<b>f</b>) WHOS-CFAR. (<b>g</b>) IE-CFAR. (<b>h</b>) LOGT-CFAR.</p> "> Figure 11
<p>The detection results of seven detectors in the third datasets: (<b>a</b>) Truth image. (<b>b</b>) OS-CFAR. (<b>c</b>) TMOS-CFAR. (<b>d</b>) GMOS-CFAR. (<b>e</b>) WH-CFAR. (<b>f</b>) WHOS-CFAR. (<b>g</b>) IE-CFAR. (<b>h</b>) LOGT-CFAR.</p> "> Figure 12
<p>The relation curve between PD and SCR of the seven detectors under the generalized extreme value distribution, <math display="inline"><semantics> <mrow> <mo form="prefix">Pfa</mo> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math>. (<b>a</b>) The first set data. (<b>b</b>) The second set data. (<b>c</b>) The third set data. (<b>d</b>) 100 datasets average.</p> "> Figure 13
<p>Structure flow diagram of STAF-GEV-IE-CFAR.</p> "> Figure 14
<p>The detection results of five methods at <math display="inline"><semantics> <mrow> <mi>SCR</mi> <mo>=</mo> <mn>4</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">Pfa</mo> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math>: (<b>a</b>) STAF-GEV-IE-CFAR. (<b>b</b>) STCS-WL-CFAR. (<b>c</b>) EMD-CFAR. (<b>d</b>) STAF-RCBD-CFAR. (<b>e</b>) IE-CFAR. (<b>f</b>) KGLRTD.</p> "> Figure 15
<p>The detection results of five methods at <math display="inline"><semantics> <mrow> <mi>SCR</mi> <mo>=</mo> <mn>0</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">Pfa</mo> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math>: (<b>a</b>) STAF-GEV-IE-CFAR. (<b>b</b>) STCS-WL-CFAR. (<b>c</b>) EMD-CFAR. (<b>d</b>) STAF-RCBD-CFAR. (<b>e</b>) IE-CFAR. (<b>f</b>) KGLRTD.</p> "> Figure 16
<p>The detection results of five methods at <math display="inline"><semantics> <mrow> <mi>SCR</mi> <mo>=</mo> <mn>2</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">Pfa</mo> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math>: (<b>a</b>) STAF-GEV-IE-CFAR. (<b>b</b>) STCS-WL-CFAR. (<b>c</b>) EMD-CFAR. (<b>d</b>) STAF-RCBD-CFAR. (<b>e</b>) IE-CFAR. (<b>f</b>) KGLRTD.</p> "> Figure 17
<p>The detection results of five methods at <math display="inline"><semantics> <mrow> <mi>SCR</mi> <mo>=</mo> <mn>6</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">Pfa</mo> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math>: (<b>a</b>) STAF-GEV-IE-CFAR. (<b>b</b>) STCS-WL-CFAR. (<b>c</b>) EMD-CFAR. (<b>d</b>) STAF-RCBD-CFAR. (<b>e</b>) IE-CFAR. (<b>f</b>) KGLRTD.</p> "> Figure 18
<p>Comparison of ROC curves of different methods: (<b>a</b>) SCR = 2 dB. (<b>b</b>) SCR = 4 dB. (<b>c</b>) SCR = 6 dB.</p> "> Figure 19
<p>Comparison of detection performances of different methods: (<b>a</b>) Pfa = 0.0001. (<b>b</b>) Pfa = 0.001.</p> ">
Abstract
:1. Introduction
2. Background Clutter Distribution Modeling
2.1. Original Marine Radar Data
2.2. Space-Time Adaptation Filtering
2.3. Filtered Background Clutter Distribution Modeling
2.4. Distribution Model Analysis
3. Incoherent Clutter Range Profile CFAR Detector
4. Experimental Results
4.1. Datasets
4.2. Detector Performance
4.3. Detection Performance Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Li, Y.; Zhang, Z.; Yin, S.; Ma, L. Marine target detection for PPI images based on YOLO-SWFormer. Alex. Eng. J. 2023, 82, 396–403. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Zhao, C.; Tian, Y. Rain Detection From X-Band Marine Radar Images: A Support Vector Machine-Based Approach. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2115–2123. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W. Identification of Rain and Low-Backscatter Regions in X-Band Marine Radar Images: An Unsupervised Approach. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4225–4236. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Gill, E.W. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W.; Chen, X. Evaluation and Mitigation of Rain Effect on Wave Direction and Period Estimation From X-Band Marine Radar Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5207–5219. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W. Spatial–Temporal Convolutional Gated Recurrent Unit Network for Significant Wave Height Estimation From Shipborne Marine Radar Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W. Maneuvering target tracking from nautical radar images using particle-Kalman filters. J. Electromagn. Waves Appl. 2013, 27, 2366–2378. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Hao, C.; Gao, Y.; Wang, Y.L. Multichannel adaptive signal detection: Basic theory and literature review. Sci. China Inf. Sci. 2022, 65, 121301. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, J.; Fang, Y.; Zhang, L.; Zhang, Q. End-to-End Moving Target Indication for Airborne Radar Using Deep Learning. Remote Sens. 2022, 14, 5354. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Himed, B. A Parametric Moving Target Detector for Distributed MIMO Radar in Non-Homogeneous Environment. IEEE Trans. Signal Process. 2013, 61, 2282–2294. [Google Scholar] [CrossRef]
- Wen, B.; Wei, Y.; Lu, Z. Sea Clutter Suppression and Target Detection Algorithm of Marine Radar Image Sequence Based on Spatio-Temporal Domain Joint Filtering. Entropy 2022, 24, 250. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Zhou, C. Study on Sea Clutter Suppression Methods Based on a Realistic Radar Dataset. Remote Sens. 2019, 11, 2721. [Google Scholar] [CrossRef]
- Conte, E.; De Maio, A.; Ricci, G. GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans. Signal Process. 2001, 49, 1336–1348. [Google Scholar] [CrossRef]
- Kelly, E. An Adaptive Detection Algorithm. IEEE Trans. Aerosp. Electron. Syst. 1986, AES-22, 115–127. [Google Scholar] [CrossRef]
- Chen, W.S.; Reed, I.S. A new CFAR detection test for radar. Digit. Signal Process. 1991, 1, 198–214. [Google Scholar] [CrossRef]
- Posner, F. Spiky sea clutter at high range resolutions and very low grazing angles. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 58–73. [Google Scholar] [CrossRef]
- Conte, E.; De Maio, A.; Galdi, C. Statistical analysis of real clutter at different range resolutions. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 903–918. [Google Scholar] [CrossRef]
- Long, M.W. Radar reflectivity of land and sea. Lexington 1975, 3, 97–104. [Google Scholar]
- Sayama, S.; Sekine, M. Log-normal, log-Weibull and K-distributed sea clutter. IEICE Trans. Commun. 2002, 85, 1375–1381. [Google Scholar]
- Angelliaume, S.; Rosenberg, L.; Ritchie, M. Modeling the Amplitude Distribution of Radar Sea Clutter. Remote Sens. 2019, 11, 319. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Weinberg, G.V. Fractional order Pareto distributions with application to X-band maritime radar clutter. IET Radar Sonar Navig. 2015, 9, 817–826. [Google Scholar] [CrossRef]
- Fiche, A.; Angelliaume, S.; Rosenberg, L.; Khenchaf, A. Analysis of X-Band SAR Sea-Clutter Distributions at Different Grazing Angles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4650–4660. [Google Scholar] [CrossRef]
- Dong, Y. Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter; Defence Technical Information Center: Edinburgh, SA, Australia, 2006. [Google Scholar]
- Wen, B.; Lu, Z.; Mao, Y.; Zhou, B. Marine Radar Image Sequence Target Detection Based on Space-Time Adaptive Filtering and Hough Transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13506–13522. [Google Scholar] [CrossRef]
- Won, E.S.; Ouchi, K.; Yang, C.S. Extraction of Underwater Laver Cultivation Nets by SAR Polarimetric Entropy. IEEE Geosci. Remote Sens. Lett. 2013, 10, 231–235. [Google Scholar]
- Jin, T.T.; She, X.Q.; Qiu, X.L.; Lei, B. Intertidal area classification with generalized extreme value distribution and Markov random field in quad-polarimetric synthetic aperture radar imagery. Front. Inf. Technol. Electron. Eng. 2019, 20, 253–264. [Google Scholar] [CrossRef]
- Guo, R.; Cui, J.; Jing, G.; Zhang, S.; Xing, M. Validating GEV Model for Reflection Symmetry-Based Ocean Ship Detection with Gaofen-3 Dual-Polarimetric Data. Remote Sens. 2020, 12, 1148. [Google Scholar] [CrossRef]
- Hao, D.; Yong, H.; Liu, N.; Xue, Y.; Wang, G. Modeling of sea spike events with generalized extreme value distribution. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015; pp. 113–116. [Google Scholar]
- Gandhi, P.; Kassam, S. Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 427–445. [Google Scholar] [CrossRef]
- Tang, G.; Zhuge, Y.; Claramunt, C.; Men, S. N-YOLO: A SAR Ship Detection Using Noise-Classifying and Complete-Target Extraction. Remote Sens. 2021, 13, 871. [Google Scholar] [CrossRef]
- Kronauge, M.; Rohling, H. Fast Two-Dimensional CFAR Procedure. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1817–1823. [Google Scholar] [CrossRef]
- Detouche, N.; Laroussi, T.; Madjidi, H. New log-t-based CFAR detectors for a non-homogeneous Weibull Background. Phys. Commun. 2023, 59, 102085. [Google Scholar] [CrossRef]
- Zebiri, K.; Mezache, A. Radar CFAR detection for multiple-targets situations for Weibull and log-normal distributed clutter. Signal Image Video Process. 2021, 15, 1671–1678. [Google Scholar] [CrossRef]
- Weinberg, G.V.; Tran, C. A Weber–Haykin detector in correlated Pareto distributed clutter. Digit. Signal Process. 2019, 84, 107–113. [Google Scholar] [CrossRef]
- Zebiri, K.; Mezache, A. Triple-order statistics-based CFAR detection for heterogeneous Pareto type I background. Signal Image Video Process. 2023, 17, 1105–1111. [Google Scholar] [CrossRef]
- Weinberg, G.V. Trimmed geometric mean order statistic CFAR detector for Pareto distributed clutter. Signal Image Video Process. 2018, 12, 651–657. [Google Scholar] [CrossRef]
- Weinberg, G.V.; Bateman, L.; Hayden, P. Development of non-coherent CFAR detection processes in Weibull background. Digit. Signal Process. 2018, 75, 96–106. [Google Scholar] [CrossRef]
- Pourmottaghi, A.; Taban, M.R.; Gazor, S. A CFAR Detector in a Nonhomogenous Weibull Clutter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1747–1758. [Google Scholar] [CrossRef]
- Mbouombouo Mboungam, A.H.; Zhi, Y.; Fonzeu Monguen, C.K. Constant false alarm rate detection method in mixed Weibull distribution sea clutter. Digit. Signal Process. 2024, 149, 104494. [Google Scholar] [CrossRef]
- Weinberg, G.V. On the Construction of CFAR Decision Rules via Transformations. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1140–1146. [Google Scholar] [CrossRef]
- Maffei, C.; Alfieri, S.M.; Menenti, M. Relating Spatiotemporal Patterns of Forest Fires Burned Area and Duration to Diurnal Land Surface Temperature Anomalies. Remote Sens. 2018, 10, 1777. [Google Scholar] [CrossRef]
- Weinberg, G.V. An Invariant Sliding Window Detection Process. IEEE Signal Process. Lett. 2017, 24, 1093–1097. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Gill, E.W. Estimation of Significant Wave Height From X-Band Marine Radar Images Based on Ensemble Empirical Mode Decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1740–1744. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Gill, E.W. Wind Direction Estimation From Rain-Contaminated Marine Radar Data Using the Ensemble Empirical Mode Decomposition Method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1833–1841. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Gill, E.W. An Empirical Mode Decomposition Method for Sea Surface Wind Measurements From X-Band Nautical Radar Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6218–6227. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Gao, Y.; Ma, B. Sea Clutter Suppression Using Smoothed Pseudo-Wigner–Ville Distribution–Singular Value Decomposition during Sea Spikes. Remote Sens. 2023, 15, 5360. [Google Scholar] [CrossRef]
- Shu, G.; Chang, J.; Lu, J.; Wang, Q.; Li, N. A Novel Method for SAR Ship Detection Based on Eigensubspace Projection. Remote Sens. 2022, 14, 3441. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W.; Chen, X. Mitigation of Rain Effect on Wave Height Measurement Using X-Band Radar Sensor. IEEE Sens. J. 2022, 22, 5929–5938. [Google Scholar] [CrossRef]
Data | GoF Test | Log-Normal | Weibull | Generalized Pareto | Generalized Extreme Value | K | WW | KK |
---|---|---|---|---|---|---|---|---|
First | KS | 8.68 × | 4.05 × | 3.56 × | 2.29 × | 1.40 × | 3.34 × | 1.25 × |
MSE | 2.03 × | 5.44 × | 3.57 × | 1.22 × | 6.33 × | 3.81 × | 5.66 × | |
Second | KS | 8.98 × | 4.04 × | 3.51 × | 2.03 × | 1.24 × | 3.88 × | 1.32 × |
MSE | 2.15 × | 5.24 × | 3.69 × | 9.25 × | 6.41 × | 5.49 × | 6.81 × | |
Third | KS | 8.61 × | 4.47 × | 3.89 × | 2.56 × | 1.31 × | 3.98 × | 1.42 × |
MSE | 2.15 × | 5.24 × | 3.69 × | 9.25 × | 6.41 × | 5.49 × | 6.81 × |
Data | GoF Test | Log-Normal | Weibull | Generalized Pareto | Generalized Extreme Value | K | WW | KK |
---|---|---|---|---|---|---|---|---|
First | KS | 4.40 × | 2.43 × | 2.67 × | 9.07 × | 1.32 × | 1.84 × | 1.11 × |
MSE | 7.02 × | 1.97 × | 2.79 × | 1.76 × | 5.79 × | 9.89 × | 3.98 × | |
Second | KS | 4.48 × | 2.36 × | 2.71 × | 7.99 × | 1.10 × | 1.95 × | 1.22 × |
MSE | 7.16 × | 1.79 × | 2.85 × | 1.32 × | 4.10 × | 1.24 × | 4.74 × | |
Third | KS | 4.25 × | 2.44 × | 2.77 × | 8.80 × | 8.11 × | 1.47 × | 1.14 × |
MSE | 6.18 × | 2.00 × | 2.83 × | 2.21 × | 3.86 × | 7.57 × | 4.02 × |
Data | Distribution | 0.9 | 0.99 | 0.999 | 0.9993 | 0.9996 | 0.9999 |
---|---|---|---|---|---|---|---|
First | Log-normal | 2.09 × | 1.83 × | 1.02 × | 1.02 × | 1.02 × | 2.51 × |
Weibull | 3.79 × | 5.23 × | 7.43 × | 7.43 × | 7.04 × | 9.98 × | |
Generalized Pareto | 9.73 × | 6.95 × | 3.65 × | 3.65 × | 3.62 × | 6.17 × | |
Generalized Extreme Value | 1.43 × | 8.75 × | 5.10 × | 5.10 × | 5.25 × | 7.96 × | |
K | 7.04 × | 4.56 × | 1.92 × | 1.92 × | 1.91 × | 2.48 × | |
WW | 1.04 × | 7.80 × | 1.92 × | 1.92 × | 1.93 × | 1.01 × | |
KK | 3.12 × | 1.23 × | 4.47 × | 4.47 × | 4.43 × | 2.63 × | |
Second | Log-normal | 2.15 × | 1.97 × | 9.83 × | 9.75 × | 9.68 × | 3.57 × |
Weibull | 3.04 × | 4.90 × | 8.03 × | 7.75 × | 7.47 × | 9.86 × | |
Generalized Pareto | 9.90 × | 7.28 × | 3.46 × | 3.43 × | 3.39 × | 9.37 × | |
Generalized Extreme Value | 1.49 × | 2.57 × | 1.21 × | 1.26 × | 1.32 × | 6.33 × | |
K | 4.45 × | 1.89 × | 5.74 × | 5.66 × | 5.59 × | 9.26 × | |
WW | 1.10 × | 2.08 × | 1.67 × | 1.67 × | 1.67 × | 4.29 × | |
KK | 3.46 × | 1.64 × | 5.18 × | 5.11 × | 5.05 × | 8.77 × | |
Third | Log-normal | 2.13 × | 1.80 × | 7.45 × | 7.39 × | 7.33 × | 2.47 × |
Weibull | 4.87 × | 5.23 × | 9.10 × | 8.83 × | 8.55 × | 1.00 × | |
Generalized Pareto | 1.02 × | 7.82 × | 3.64 × | 3.61 × | 3.58 × | 1.18 × | |
Generalized Extreme Value | 3.44 × | 1.23 × | 7.94 × | 8.48 × | 9.02 × | 5.28 × | |
K | 7.92 × | 2.90 × | 6.70 × | 6.60 × | 6.51 × | 9.46 × | |
WW | 6.40 × | 4.41 × | 2.12 × | 2.10 × | 2.08 × | 3.60 × | |
KK | 3.66 × | 1.49 × | 3.29 × | 3.25 × | 3.20 × | 4.29 × |
SCR (dB) | OS-CFAR | GMOS-CFAR | WH-CFAR | TMOS-CFAR | WHOS-CFAR | IE-CFAR | LOGT-CFAR | |
---|---|---|---|---|---|---|---|---|
Pd | 6 | 21.86% | 5.73% | 48.02% | 45.88% | 39.78% | 49.82% | 20.79% |
8 | 72.76% | 32.97% | 88.53% | 87.46% | 83.15% | 89.61% | 68.46% | |
10 | 95.70% | 60.93% | 97.85% | 97.85% | 96.77% | 98.21% | 94.98% |
SCR (dB) | OS-CFAR | GMOS-CFAR | WH-CFAR | TMOS-CFAR | WHOS-CFAR | IE-CFAR | LOGT-CFAR | |
---|---|---|---|---|---|---|---|---|
Pd | 6 | 5.02% | 4.3% | 29.03% | 24.73% | 26.88% | 29.75% | 3.23% |
8 | 41.94% | 17.20% | 72.04% | 70.25% | 70.25% | 75.27% | 39.78% | |
10 | 89.25% | 39.78% | 98.21% | 97.49% | 97.49% | 99.28% | 89.25% |
SCR (dB) | OS-CFAR | GMOS-CFAR | WH-CFAR | TMOS-CFAR | WHOS-CFAR | IE-CFAR | LOGT-CFAR | |
---|---|---|---|---|---|---|---|---|
Pd | 6 | 16.85% | 1.79% | 25.09% | 24.73% | 19.00% | 26.09% | 19.00% |
8 | 41.94% | 16.49% | 73.84% | 71.68% | 59.14% | 74.76% | 43.37% | |
10 | 95.34% | 51.25% | 99.64% | 99.64% | 98.92% | 99.64% | 94.62% |
SCR (dB) | Target Number | STAF-GEV-IE-CFAR | STAF-RCBD-CFAR | STCS-WL-CFAR | KGLRTD | EMD-CFAR | IE-CFAR | |
---|---|---|---|---|---|---|---|---|
0 | first | PD | 35.44% | 24.05% | 15.19% | 0.00% | 5.06% | 0.00% |
second | 38.57% | 38.57% | 30.00% | 0.00% | 0.00% | 0.00% | ||
third | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | ||
fourth | 11.11% | 0.00% | 0.00% | 0.00% | 9.52% | 0.00% | ||
2 | first | 82.28% | 78.48% | 65.82% | 18.99% | 3.80% | 0.00% | |
second | 77.14% | 74.29% | 58.57% | 0.00% | 1.43% | 0.00% | ||
third | 62.69% | 56.72% | 38.81% | 0.00% | 4.48% | 0.00% | ||
fourth | 57.14% | 46.03% | 30.16% | 7.94% | 19.05% | 0.00% | ||
6 | first | 100.00% | 100.00% | 100.00% | 100.00% | 12.66% | 10.13% | |
second | 98.57% | 97.14% | 95.71% | 91.43% | 31.43% | 4.29% | ||
third | 95.52% | 95.52% | 95.52% | 86.57% | 20.90% | 7.46% | ||
fourth | 98.41% | 93.65% | 90.48% | 96.83% | 46.03% | 14.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Lu, Z.; Zhou, B. Marine Radar Constant False Alarm Rate Detection in Generalized Extreme Value Distribution Based on Space-Time Adaptive Filtering Clutter Statistical Analysis. Remote Sens. 2024, 16, 3691. https://doi.org/10.3390/rs16193691
Wen B, Lu Z, Zhou B. Marine Radar Constant False Alarm Rate Detection in Generalized Extreme Value Distribution Based on Space-Time Adaptive Filtering Clutter Statistical Analysis. Remote Sensing. 2024; 16(19):3691. https://doi.org/10.3390/rs16193691
Chicago/Turabian StyleWen, Baotian, Zhizhong Lu, and Bowen Zhou. 2024. "Marine Radar Constant False Alarm Rate Detection in Generalized Extreme Value Distribution Based on Space-Time Adaptive Filtering Clutter Statistical Analysis" Remote Sensing 16, no. 19: 3691. https://doi.org/10.3390/rs16193691
APA StyleWen, B., Lu, Z., & Zhou, B. (2024). Marine Radar Constant False Alarm Rate Detection in Generalized Extreme Value Distribution Based on Space-Time Adaptive Filtering Clutter Statistical Analysis. Remote Sensing, 16(19), 3691. https://doi.org/10.3390/rs16193691