Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images
<p>Framework of the proposed change detection approach.</p> "> Figure 2
<p>Experimental datasets and ground truth images for change detection: (<b>a</b>) SPOT images acquired in 2006 with a spatial resolution of 2.5 m; (<b>b</b>) SPOT images acquired in 2007 with a spatial resolution of 2.5 m; (<b>c</b>) reference change map of DS1. (<b>d</b>) aerial images acquired in 2000 with a spatial resolution of 1.5 m; (<b>e</b>) aerial images acquired in 2005 with a spatial resolution of 1.5 m; (<b>f</b>) reference change map of DS2. (<b>g</b>) side-view satellite images acquired in 2017 with a spatial resolution of 0.5~0.8 m; (<b>h</b>) side-view satellite images acquired in 2020 with a spatial resolution of 0.5~0.8 m; and (<b>i</b>) reference change map of DS3.</p> "> Figure 3
<p>Indicative images from (<b>a</b>–<b>c</b>) the SZADA dataset and (<b>d</b>–<b>f</b>) the side-looking dataset: (<b>a</b>,<b>d</b>) image at time t1; (<b>b</b>,<b>e</b>) image at time t2; and (<b>c</b>,<b>f</b>) reference change map.</p> "> Figure 4
<p>Change detection results in the first experiment: (<b>a</b>) co-saliency change; (<b>b</b>) spectral change; (<b>c</b>) spatial change; and (<b>d</b>) proposed method.</p> "> Figure 5
<p>Change detection results in the second experiment: (<b>a</b>) IRMAD; (<b>b</b>) ISFA; (<b>c</b>) PCA; (<b>d</b>) CVA-SIFCM; (<b>e</b>) DI-Kmeans; and (<b>f</b>) proposed method.</p> "> Figure 6
<p>Change detection results in the third experiment: (<b>a</b>) spectra; (<b>b</b>) spectra + texture; (<b>c</b>) spectra + structure; and (<b>d</b>) proposed method.</p> "> Figure 7
<p>Comparison of recognition results at different segmentation scales: (<b>a</b>) image segmentation when scale = 58; (<b>b</b>) image segmentation when scale = 87; (<b>c</b>) image segmentation when scale = 124; (<b>d</b>) changed objects recognition when scale = 58; (<b>e</b>) changed objects recognition when scale = 87; and (<b>f</b>) changed objects recognition when scale = 124. Green box: false detection; Red box: missed detection.</p> "> Figure 8
<p>Comparison of post-processing methods: (<b>a</b>) multi-feature + morphology operation; (<b>b</b>) spectra + morphology operation; (<b>c</b>) proposed method; and (<b>d</b>) reference change map.</p> ">
Abstract
:1. Introduction
2. Methodology
- (1)
- To overcome the limitations of a single extraction method, spectral feature change is generated by three independent algorithms (IRMAD, ISFA, and PCA) as well as the majority voting fusion strategy.
- (2)
- Considering the scarcity of only employing image features, the cluster-based co-saliency method is used to acquire the saliency change information of two temporal remote sensing images.
- (3)
- The spatial feature sets of bi-temporal remote sensing images are constructed by using a histogram of oriented gradient, multi-scale grey-level co-occurrence matrix texture and rolling guidance filter, and then the spatial change information is obtained through optimal feature selection and adaptive threshold segmentation.
- (4)
- Multi-scale segmentation is performed on the superimposed first principal component image, and the optimal segmentation result is obtained by the scale parameter determination strategy.
- (5)
- Initial pixel-level change information and the segmentation results are combined by fuzzy integral decision fusion to obtain the final land cover change results.
2.1. Change Information Generation
2.1.1. Spectral Change Information
2.1.2. Co-Saliency Change Information
- 1.
- The bi-temporal images and are divided into clusters by the K-means method.
- 2.
- The contrast cues and the spatial cues of each cluster are calculated as follows:
- 3.
- The following formula is used to fuse the contrast cue and the spatial cue:
- 4.
- The co-saliency map of two temporal images can be obtained through the following formula:
2.1.3. Spatial Change Information
2.2. Multi-Scale Segmentation
2.3. Decision Fusion Using Fuzzy Integral
- (1)
- ;
- (2)
- ;
- (3)
- if .
2.4. Assessment of the Change Detection Processes
3. Experimental Datasets and Experimental Configuration
3.1. Experimental Datasets
3.2. Experimental Configuration
4. Results
4.1. First Experiment Results
4.2. Second Experiment Results
4.3. Third Experiment Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Kennedy, R.; Fensholt, R. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. Remote Sens. Environ. 2015, 169, 438–453. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Wang, X. A new segmentation method for very high resolution imagery using spectral and morphological information. ISPRS J. Photogramm. Remote Sens. 2015, 101, 145–162. [Google Scholar] [CrossRef]
- Pisek, J.; Rautiainen, M.; Nikopensius, M.; Raabe, K. Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach. Remote Sens. Environ. 2015, 163, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Du, P.; Liu, S.; Xia, J.; Zhao, Y. Information fusion techniques for change detection from multi-temporal remote sensing images. Inf. Fusion 2013, 14, 19–27. [Google Scholar] [CrossRef]
- Fang, H.; Du, P.; Wang, X.; Lin, C.; Tang, P. Unsupervised Change Detection Based on Weighted Change Vector Analysis and Improved Markov Random Field for High Spatial Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Tarantino, C.; Adamo, M.; Lucas, R.; Blonda, P. Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data. Remote Sens. Environ. 2016, 175, 65–72. [Google Scholar] [CrossRef]
- Wu, T.; Luo, J.; Fang, J.; Ma, J.; Song, X. Unsupervised Object-Based Change Detection via a Weibull Mixture Model-Based Binarization for High-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 63–67. [Google Scholar] [CrossRef]
- Biao, W.; Seokkeun, C.; Younggi, B.; Soungki, L.; Jaewan, C. Object-Based Change Detection of Very High Resolution Satellite Imagery Using the Cross-Sharpening of Multitemporal Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1151–1155. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Shi, W.; Zhang, X.; Benediktsson, J.A. Landslide Inventory Mapping From Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1520–1532. [Google Scholar] [CrossRef]
- Wang, H.; Qi, J.; Lei, Y.; Wu, J.; Li, B.; Jia, Y. A Refined Method of High-Resolution Remote Sensing Change Detection Based on Machine Learning for Newly Constructed Building Areas. Remote Sens. 2021, 13, 1507. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Yang, X.; Jia, L.; Fang, S. Unsupervised change detection between SAR images based on hypergraphs. ISPRS J. Photogramm. Remote Sens. 2020, 164, 61–72. [Google Scholar] [CrossRef]
- Xue, D.; Lei, T.; Jia, X.; Wang, X.; Chen, T.; Nandi, A.K. Unsupervised Change Detection Using Multiscale and Multiresolution Gaussian-Mixture-Model Guided by Saliency Enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1796–1809. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Wan, Y.; Benediktsson, J.A.; Zhang, X. Post-Processing Approach for Refining Raw Land Cover Change Detection of Very High-Resolution Remote Sensing Images. Remote Sens. 2018, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Mayes, M.T.; Mustard, J.F.; Melillo, J.M. Forest cover change in Miombo Woodlands: Modeling land cover of African dry tropical forests with linear spectral mixture analysis. Remote Sens. Environ. 2015, 165, 203–215. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L. An Approach to Multiple Change Detection in VHR Optical Images Based on Iterative Clustering and Adaptive Thresholding. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1334–1338. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Zhang, L. Slow Feature Analysis for Change Detection in Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2858–2874. [Google Scholar] [CrossRef]
- Nielsen, A.A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Javed, A.; Jung, S.; Liu, S. Object-Based Change Detection of Very High Resolution Images by Fusing Pixel-Based Change Detection Results Using Weighted Dempster–Shafer Theory. Remote Sens. 2020, 12, 983. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, S.; Wan, J.; Yasir, M.; Li, H. Change Detection Method of High Resolution Remote Sensing Image Based on D-S Evidence Theory Feature Fusion. IEEE Access 2021, 9, 4673–4687. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.K. Unsupervised change detection in remote sensing images using fusion of spectral and statistical indices. Egypt. J. Remote Sens. Space Sci. 2018, 21, 345–351. [Google Scholar] [CrossRef]
- Cai, L.; Shi, W.; Zhang, H.; Hao, M. Object-oriented change detection method based on adaptive multi-method combination for remote-sensing images. Int. J. Remote Sens. 2016, 37, 5457–5471. [Google Scholar] [CrossRef]
- Leichtle, T.; Geiß, C.; Wurm, M.; Lakes, T.; Taubenböck, H. Unsupervised change detection in VHR remote sensing imagery—An object-based clustering approach in a dynamic urban environment. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 15–27. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, X.; Wang, D.; Yuan, M.; Feng, X.; Kelly, M. Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition. ISPRS J. Photogramm. Remote Sens. 2016, 119, 402–414. [Google Scholar] [CrossRef]
- Ansari, R.A.; Buddhiraju, K.M.; Malhotra, R. Urban change detection analysis utilizing multiresolution texture features from polarimetric SAR images. Remote Sens. Appl. Soc. Environ. 2020, 20, 100418. [Google Scholar] [CrossRef]
- Zheng, Z.; Cao, J.; Lv, Z.; Benediktsson, J.A. Spatial–Spectral Feature Fusion Coupled with Multi-Scale Segmentation Voting Decision for Detecting Land Cover Change with VHR Remote Sensing Images. Remote Sens. 2019, 11, 1903. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [Google Scholar] [CrossRef] [Green Version]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Xiao, P.; Yuan, M.; Zhang, X.; Feng, X.; Guo, Y. Cosegmentation for Object-Based Building Change Detection From High-Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1587–1603. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, P.; Feng, X.; Yuan, M. Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area. Remote Sens. Environ. 2017, 201, 243–255. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H. Land–Use and Land-Cover Change Detection Using Dynamic Time Warping–Based Time Series Clustering Method. Can. J. Remote Sens. 2020, 46, 67–83. [Google Scholar] [CrossRef]
- Xing, H.; Zhu, L.; Chen, B.; Zhang, L.; Hou, D.; Fang, W. A novel change detection method using remotely sensed image time series value and shape based dynamic time warping. Geocarto Int. 2021, 1–18. [Google Scholar] [CrossRef]
- Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021, 63, 101310. [Google Scholar] [CrossRef]
- Mandal, M.; Vipparthi, S.K. An Empirical Review of Deep Learning Frameworks for Change Detection: Model Design, Experimental Frameworks, Challenges and Research Needs. IEEE Trans. Intell. Transp. Syst. 2021, 1–22. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection With Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Pan, J.; Cui, W.; An, X.; Huang, X.; Zhang, H.; Zhang, S.; Zhang, R.; Li, X.; Cheng, W.; Hu, Y. MapsNet: Multi-level feature constraint and fusion network for change detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102676. [Google Scholar] [CrossRef]
- Pan, F.; Wu, Z.; Liu, Q.; Xu, Y.; Wei, Z. DCFF-Net: A Densely Connected Feature Fusion Network for Change Detection in High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11974–11985. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Ferraris, V.; Dobigeon, N.; Chabert, M. Robust fusion algorithms for unsupervised change detection between multi-band optical images—A comprehensive case study. Inf. Fusion 2020, 64, 293–317. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Solaimani, K.; Hazini, S. A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 226–234. [Google Scholar] [CrossRef]
- Xu, L.; Jing, W.; Song, H.; Chen, G. High-Resolution Remote Sensing Image Change Detection Combined With Pixel-Level and Object-Level. IEEE Access 2019, 7, 78909–78918. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Cui, W. High-Resolution Remote Sensing Image Change Detection by Statistical-Object-Based Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2440–2447. [Google Scholar] [CrossRef]
- Hao, M.; Zhou, M.; Jin, J.; Shi, W. An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1401–1405. [Google Scholar] [CrossRef]
- Jimenez-Sierra, D.A.; Quintero-Olaya, D.A.; Alvear-Munoz, J.C.; Benitez-Restrepo, H.D.; Florez-Ospina, J.F.; Chanussot, J. Graph Learning Based on Signal Smoothness Representation for Homogeneous and Heterogeneous Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Shuai, W.; Jiang, F.; Zheng, H.; Li, J. MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images. Appl. Sci. 2022, 12, 5158. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Li, M.; Kuang, G. Sparse-Constrained Adaptive Structure Consistency-Based Unsupervised Image Regression for Heterogeneous Remote-Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zhao, R.; Peng, G.-H.; Yan, W.-d.; Pan, L.-L.; Wang, L.-Y. Change detection in SAR images based on superpixel segmentation and image regression. Earth Sci. Inform. 2020, 14, 69–79. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Ni, W.; Yan, W.; Zhang, H. Optimal Segmentation Scale Selection for Object-Based Change Detection in Remote Sensing Images Using Kullback–Leibler Divergence. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1124–1128. [Google Scholar] [CrossRef]
- Luo, H.; Liu, C.; Wu, C.; Guo, X. Urban Change Detection Based on Dempster–Shafer Theory for Multitemporal Very High-Resolution Imagery. Remote Sens. 2018, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; Yi, Y.; Liu, Z.; Dong, T.; Ren, D. Novel Multiscale Decision Fusion Approach to Unsupervised Change Detection for High-Resolution Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Cui, G.; Lv, Z.; Li, G.; Atli Benediktsson, J.; Lu, Y. Refining Land Cover Classification Maps Based on Dual-Adaptive Majority Voting Strategy for Very High Resolution Remote Sensing Images. Remote Sens. 2018, 10, 1238. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Liu, S.; Gamba, P.; Tan, K.; Xia, J. Fusion of Difference Images for Change Detection Over Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1076–1086. [Google Scholar] [CrossRef]
- Lal, A.M.; Margret Anouncia, S. Semi-supervised change detection approach combining sparse fusion and constrained k means for multi-temporal remote sensing images. Egypt. J. Remote Sens. Space Sci. 2015, 18, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Chen, D.; Yu, J. A targeted change-detection procedure by combining change vector analysis and post-classification approach. ISPRS J. Photogramm. Remote Sens. 2016, 114, 115–124. [Google Scholar] [CrossRef]
- Zou, B.; Li, H.; Zhang, L. Multilevel Information Fusion-Based Change Detection for Multiangle PolSAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, S.; Du, Q.; Tong, X.; Samat, A.; Bruzzone, L. Unsupervised Change Detection in Multispectral Remote Sensing Images via Spectral-Spatial Band Expansion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3578–3587. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Benediktsson, J.A. Object-Oriented Key Point Vector Distance for Binary Land Cover Change Detection Using VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6524–6533. [Google Scholar] [CrossRef]
- Huang, L.; Peng, Q.; Yu, X. Change Detection in Multitemporal High Spatial Resolution Remote-Sensing Images Based on Saliency Detection and Spatial Intuitionistic Fuzzy C-Means Clustering. J. Spectrosc. 2020, 2020, 2725186. [Google Scholar] [CrossRef]
- Dragut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemmour, H.; Chibani, Y. Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS J. Photogramm. Remote Sens. 2006, 61, 125–133. [Google Scholar] [CrossRef]
- Benedek, C.; Sziranyi, T. Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3416–3430. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Lu, Y.; Chen, H.; Wei, H.; Xie, D.; Yue, J.; Chen, R.; Lv, S.; Jiang, B. S2Looking: A Satellite Side-Looking Dataset for Building Change Detection. Remote Sens. 2021, 13, 5094. [Google Scholar] [CrossRef]
True | Change | Unchange | |
---|---|---|---|
Detection | |||
Change | |||
Unchange | |||
Total |
Dataset | Method | Quantitative Evaluation Index | ||||
---|---|---|---|---|---|---|
MR | FAR | OA (%) | Kappa | F1 Score | ||
DS1 | Co-saliency change | 0.190 | 0.042 | 93.629 | 0.754 | 0.792 |
Spectral change | 0.203 | 0.040 | 93.531 | 0.748 | 0.787 | |
Spatial change | 0.208 | 0.023 | 94.892 | 0.793 | 0.823 | |
Proposed method | 0.129 | 0.011 | 97.316 | 0.881 | 0.897 | |
DS2 | Co-saliency change | 0.337 | 0.024 | 95.775 | 0.622 | 0.644 |
Spectral change | 0.340 | 0.024 | 95.729 | 0.618 | 0.641 | |
Spatial change | 0.288 | 0.035 | 95.054 | 0.598 | 0.624 | |
Proposed method | 0.261 | 0.005 | 98.479 | 0.781 | 0.789 | |
DS3 | Co-saliency change | 0.441 | 0.061 | 87.667 | 0.524 | 0.596 |
Spectral change | 0.396 | 0.057 | 88.764 | 0.570 | 0.637 | |
Spatial change | 0.327 | 0.158 | 81.366 | 0.429 | 0.541 | |
Proposed method | 0.238 | 0.016 | 95.268 | 0.791 | 0.818 |
Dataset | Method | Quantitative Evaluation Index | ||||
---|---|---|---|---|---|---|
MR | FAR | OA (%) | Kappa | F1 Score | ||
DS1 | IRMAD | 0.181 | 0.028 | 94.850 | 0.796 | 0.826 |
ISFA | 0.196 | 0.051 | 92.700 | 0.723 | 0.767 | |
PCA | 0.349 | 0.120 | 84.546 | 0.466 | 0.557 | |
CVA-SIFCM | 0.286 | 0.054 | 91.149 | 0.654 | 0.707 | |
DI-Kmeans | 0.241 | 0.069 | 90.528 | 0.649 | 0.705 | |
Proposed method | 0.129 | 0.011 | 97.316 | 0.881 | 0.897 | |
DS2 | IRMAD | 0.328 | 0.031 | 95.212 | 0.593 | 0.619 |
ISFA | 0.465 | 0.027 | 94.778 | 0.514 | 0.542 | |
PCA | 0.290 | 0.147 | 84.439 | 0.382 | 0.345 | |
CVA-SIFCM | 0.464 | 0.056 | 92.023 | 0.396 | 0.437 | |
DI-Kmeans | 0.414 | 0.078 | 90.230 | 0.361 | 0.409 | |
Proposed method | 0.261 | 0.005 | 98.479 | 0.781 | 0.789 | |
DS3 | IRMAD | 0.398 | 0.064 | 88.127 | 0.552 | 0.623 |
ISFA | 0.383 | 0.089 | 86.290 | 0.512 | 0.594 | |
PCA | 0.434 | 0.103 | 84.334 | 0.447 | 0.541 | |
CVA-SIFCM | 0.460 | 0.092 | 84.756 | 0.444 | 0.536 | |
DI-Kmeans | 0.433 | 0.122 | 82.741 | 0.413 | 0.517 | |
Proposed method | 0.238 | 0.016 | 95.268 | 0.791 | 0.818 |
Dataset | Method | Quantitative Evaluation Index | ||||
---|---|---|---|---|---|---|
MR | FAR | OA (%) | Kappa | F1 Score | ||
DS1 | Spectra | 0.128 | 0.065 | 92.564 | 0.733 | 0.778 |
Spectra + texture | 0.110 | 0.070 | 92.641 | 0.734 | 0.779 | |
Spectra + structure | 0.112 | 0.048 | 94.203 | 0.786 | 0.820 | |
Proposed method | 0.129 | 0.011 | 97.316 | 0.881 | 0.897 | |
DS2 | Spectra | 0.292 | 0.081 | 90.667 | 0.423 | 0.467 |
Spectra + texture | 0.280 | 0.050 | 93.705 | 0.537 | 0.569 | |
Spectra + structure | 0.175 | 0.031 | 96.192 | 0.660 | 0.680 | |
Proposed method | 0.261 | 0.005 | 98.479 | 0.781 | 0.789 | |
DS3 | Spectra | 0.323 | 0.058 | 89.865 | 0.625 | 0.685 |
Spectra + texture | 0.274 | 0.049 | 91.463 | 0.684 | 0.735 | |
Spectra + structure | 0.259 | 0.066 | 90.299 | 0.655 | 0.714 | |
Proposed method | 0.238 | 0.016 | 95.268 | 0.791 | 0.818 |
Dataset | Method | Quantitative Evaluation Index | ||||
---|---|---|---|---|---|---|
MR | FAR | OA (%) | Kappa | F1 Score | ||
DS1 | Multi-feature + morphology operation | 0.170 | 0.034 | 94.558 | 0.788 | 0.820 |
Spectra + morphology operation | 0.170 | 0.084 | 90.349 | 0.663 | 0.720 | |
Proposed method | 0.129 | 0.011 | 97.316 | 0.881 | 0.897 | |
DS2 | Multi-feature + morphology operation | 0.379 | 0.013 | 96.546 | 0.657 | 0.675 |
Spectra + morphology operation | 0.367 | 0.076 | 90.664 | 0.423 | 0.439 | |
Proposed method | 0.261 | 0.005 | 98.479 | 0.781 | 0.789 | |
DS3 | Multi-feature + morphology operation | 0.340 | 0.049 | 90.324 | 0.633 | 0.690 |
Spectra + morphology operation | 0.423 | 0.083 | 86.173 | 0.494 | 0.576 | |
Proposed method | 0.238 | 0.016 | 95.268 | 0.791 | 0.818 |
Saliency Change | Spectral Change | Spatial Change | Multi-Scale Segmentation | |
---|---|---|---|---|
DS1 | 12.1 s | 37.2 s | 336.0 s | 67.2 s |
DS2 | 13.0 s | 28.2 s | 298.1 s | 64.2 s |
DS3 | 13.5 s | 55.4 s | 463.1 s | 76.9 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, C.; Ding, H.; Molina, I.; He, Y.; Peng, D. Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images. Remote Sens. 2022, 14, 3297. https://doi.org/10.3390/rs14143297
Ge C, Ding H, Molina I, He Y, Peng D. Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images. Remote Sensing. 2022; 14(14):3297. https://doi.org/10.3390/rs14143297
Chicago/Turabian StyleGe, Chuting, Haiyong Ding, Inigo Molina, Yongjian He, and Daifeng Peng. 2022. "Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images" Remote Sensing 14, no. 14: 3297. https://doi.org/10.3390/rs14143297
APA StyleGe, C., Ding, H., Molina, I., He, Y., & Peng, D. (2022). Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images. Remote Sensing, 14(14), 3297. https://doi.org/10.3390/rs14143297