Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain
"> Figure 1
<p>Viewing geometry and data coverage by terrestrial laser scanning (TLS) and unmanned aerial vehicle structure from motion (UAV-SfM) from single positions in a rugged terrain.</p> "> Figure 2
<p>Area of interest viewed towards the headwall of the valley with marked scree thaluses, exposed bedrock and roche moutonees in the bottom of cirques.</p> "> Figure 3
<p>Location of the area of interest. Background digital elevation model (DEM) and shaded relief derived from SRTMGL1.V003 in spatial resolution 30 m © NASA JPL (<a href="https://earthexplorer.usgs.gov/" target="_blank">https://earthexplorer.usgs.gov/</a>) vertical interval of contours is 25 m.</p> "> Figure 4
<p>Location of the TLS stations and ground control points (GCPs) acquired with real-time kinematic (RTK) GNSS. Contours are derived from the final DEM with vertical interval of 10 m.</p> "> Figure 5
<p>TLS data coverage per each scanner position during (<b>A</b>) the September campaign and (<b>B</b>) the October campaign. Black dots show location of the scanner positions.</p> "> Figure 6
<p>Demonstration of the Multi Station Adjustment method (MSA) implemented in the RiScanPro software by Riegl. First, the MSA requires two overlapping point clouds to be coarsely registered (<b>A</b>). Subsequently, the MSA results in a highly accurate spatial match of the two point clouds (<b>B</b>) in the order of millimeters achieved by the ICP.</p> "> Figure 7
<p>Schematic workflow of the combined use of TLS and UAV-SfM photogrammetry in mapping the rugged alpine topography including the notations of sensors, surveying tools, and software.</p> "> Figure 8
<p>The point density of merged TLS point clouds acquired in September and October 2017. Black dots show locations of the scanner positions.</p> "> Figure 9
<p>Density of UAV–SfM points acquired in September (<b>A</b>) and October (<b>B</b>) of 2017.</p> "> Figure 10
<p>Digital elevation model derived from the combined TLS and UAV–SfM data with 0.5 m grid cell size.</p> "> Figure 11
<p>Level of detail of DEMs derived from (<b>A</b>) the SRTM data, (<b>B</b>) TANDEM-X data, (<b>C</b>) topographic contours, and (<b>D</b>) fused TLS and UAV-SfM data; all DEMs were resampled to 10 m spatial resolution.</p> "> Figure 12
<p>Vertical differences as digital surfaces of differences (DODs) derived by subtraction of TLS an UAV-SfM DEM from: (<b>A</b>) SRTM DEM, (<b>B</b>) TanDEM-X DEM, and (<b>C</b>) DMR3 DEM derived from topographic contours. (<b>D</b>) vertical profiles of all four DEMs involved in the comparison along the line between points 1 and 2 (A, B, C).</p> "> Figure 13
<p>Identification of flat levels of glacial cirque on final DEM.</p> "> Figure 14
<p>Visualization of 3D point cloud via Potree online tool.</p> "> Figure 15
<p>Normalised gradient of elevation of a detailed view showing vertical walls and overhangs as represented by (<b>A</b>) the raster-based DEM and by (<b>B</b>) a 3D mesh.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Data Collection
2.3. Terrestrial Laser Scanning
2.4. UAV Digital Photogrammetry
2.5. TLS and UAV-SfM Data Fusion
2.6. Generating a Digital Elevation Model
2.7. Comparison with Other Freely Available DEM Datasets
3. Results
3.1. Generated Point Clouds
3.2. Final DEM and Comparison with Other DEM Data Sources
3.3. Applications of DEM and 3D Point Cloud
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lucier, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Vaze, J.; Teng, J.; Spencer, G. Impact of DEM accuracy and resolution on topographic indices. Environ. Model. Softw. 2010, 25, 1086–1098. [Google Scholar] [CrossRef]
- Sharma, M.; Paige, G.B.; Miller, S.N. DEM development from ground-based LiDAR data: A method to remove non-surface objects. Remote Sens. 2010, 2, 2629–2642. [Google Scholar] [CrossRef]
- Gallay, M.; Lloyd, C.D.; McKinley, J.; Barry, L. Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England. Comput. Geosci. 2013, 51, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Vosselman, G.; Mass, H.G. Airborne and Terrestrial Laser Scanning, 1st ed.; Whittles Publishing: Dunbeath, Scotland, UK, 2010; p. 320. [Google Scholar]
- Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 590. [Google Scholar]
- Cawood, A.J.; Bond, C.E.; Howell, J.A.; Butler, R.W.H.; Totake, Y. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. J. Struct. Geol. 2017, 98, 67–82. [Google Scholar] [CrossRef]
- Lato, M.; Kemeny, J.; Harrap, R.M.; Bevan, G. Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Comput. Geosci. 2013, 50, 106–114. [Google Scholar] [CrossRef]
- Lemmens, M. Terrestrial Laser Scanning. In Geo-informations, Geotechnologies and the Environment; Springer: Dordrecht, The Netherlands, 2011; pp. 101–121. [Google Scholar]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Gallay, M.; Kaňuk, J.; Hochmuth, Z.; Meneely, J.D.; Hofierka, J.; Sedlák, V. Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: A case study of the Domica Cave, Slovakia. Int. J. Speleol. 2015, 44, 277–291. [Google Scholar] [CrossRef]
- Srinivasan, S.; Popescu, S.C.; Eriksson, M.; Sheridan, R.D.; Ku, N.W. Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter. Remote Sens. 2015, 7, 1877–1896. [Google Scholar] [CrossRef] [Green Version]
- Koreň, M.; Mokroš, M.; Bucha, T. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 122–128. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; Sánchez-Hermosilla López, J.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement 2018, 121, 127–138. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modelling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Lato, M.J.; Diederichs, M.S.; Hutchinson, D.J. Bias correction for view-limited lidar scanning of rock outcrops for structural characterization. Rock Mech. Rock Eng. 2010, 43, 615–628. [Google Scholar] [CrossRef]
- Olariu, M.I.; Ferguson, J.F.; Aiken, C.L.V.; Xu, X. Outcrop fracture characterization using terrestrial laser scanners: Deep-water Jackfork sandstone at Big Rock Quarry, Arkansas. Geosphere 2008, 4, 247–259. [Google Scholar] [CrossRef]
- Lucieer, A.; De Jong, S.M.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Earth Environ. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Klapyta, P.; Kolecka, N. Combining LiDAR data with field mapping and Schmidt-hammer relative age dating—Examples from Babia Góra range (Western Carpathians, Poland). In Geomorphometry for Geosciences; Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, T., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2015; pp. 217–220. [Google Scholar]
- Neugirg, F.; Kaiser, A.; Schmidt, J.; Becht, M.; Haas, F. Quantification, analysis and modelling of soil erosion on steep slopes using LiDAR and UAV photographs. In Sediment Dynamics from the Summit to the Sea; Jun Xu, Y., Alison, M.A., Bentley, S.J., Collins, A.L., Erskine, W.D., Golosov, V., Horowitz, A.J., Stone, M., Eds.; IAHS Press: Wallingford, UK, 2014; Volume 367, pp. 51–58. [Google Scholar]
- Cooper, S.D.; Roy, D.P.; Schaaf, C.B.; Paynter, I. Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid non-destructive field measurement of grass biomass. Remote Sens. 2017, 9, 19. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Fritsch, D. Generation of visually aesthetic and detailed 3D models of historical cities by using laser scanning and digital photogrammetry. Digit. Appl. Archaeol. Cult. Herit. 2018, 8, 57–64. [Google Scholar] [CrossRef]
- Fiorillo, F.; Jiménez Fernández-Palacios, B.; Remondino, F.; Barba, S. 3D surveying and modelling of the Archaeological area of Paestum, Italy. Virtual Archaeol. Rev. 2013, 4, 55–60. [Google Scholar] [CrossRef]
- Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 2014, 214, 339–355. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Weltz, M.A.; McGwire, K. Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots. Earth Surf. Process. Landf. 2016, 41, 308–322. [Google Scholar] [CrossRef]
- Wilkinson, M.W.; Jones, R.R.; Woods, C.E.; Gilment, S.R.; McCaffrey, K.J.W.; Kokkalas, S.; Long, J.J. A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition. Geosphere 2016, 12, 1865–1880. [Google Scholar] [CrossRef] [Green Version]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef] [Green Version]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X. Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing. Int. J. Image Data Fus. 2017, 8, 1–31. [Google Scholar] [CrossRef]
- Podgórski, J.; Kinnard, C.; Petlicki, M.; Urrutia, R. Performance assessment of Tandem-X DEM for mountain glacier elevation change detection. Remote Sens. 2019, 11, 187. [Google Scholar] [CrossRef]
- Bühler, Y.; Adams, M.S.; Bösch, R.; Stoffel, A. Mapping snow depth in alpine terrain with unmanned aerial systems (UAS): Potential and limitations. Cryosphere 2016, 10, 1075–1088. [Google Scholar] [CrossRef]
- Niedzielski, T.; Spallek, W.; Witek-Kasprzak, M. Automated snow extent mapping based on orthophoto images from Unmanned Aerial Vehicles. Pure Appl. Geophys. 2018, 175, 3285–3302. [Google Scholar] [CrossRef]
- Ødegård, R.S.; Isaken, K.; Eiken, T.; Sollid, J.L. Terrain analyses and surface velocity measurements of the Hiorthfjellet Rock glacier, Svalbard. Permafr. Periglac. Process. 2003, 14, 359–365. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Zhou, J.; Mao, L. Modelling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environ. Earth Sci. 2017, 76, 520. [Google Scholar] [CrossRef]
- Rabatel, A.; Deline, P.; Jaillet, S.; Ravanel, L. Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: A case study in the Mont Blanc area. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Jaud, M.; Passot, S.; Le Bivic, R.; Delacourt, C.; Grandjean, P.; Le Dantec, N. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-Optimal Survey Conditions. Remote Sens. 2016, 8, 465. [Google Scholar] [CrossRef]
- Balsa-Bareiro, J.; Fritsch, D. Generation of 3D/4D photorealistic building models. The testbed area for 4D cultural heritage world project: The Historical center of Calw (Germany). In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 14–16 December 2015; pp. 361–372. [Google Scholar]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef] [Green Version]
- Engel, Z.; Mentlík, P.; Braucher, R.; Minár, J.; Léanni, L.; ASTER Team. Geomorphological evidence and 10Be exposure ages for the Last Glacial Maximum and deglaciation of the Veľká and Malá Studená dolina valleys in the High Tatra Mountains, central Europe. Quat. Sci. Rev. 2015, 124, 106–123. [Google Scholar] [CrossRef]
- Nemčok, J.; Bezák, V.; Biely, A.; Gorek, A.; Gross, P.; Halouzka, R.; Janák, M.; Kahan, Š.; Mello, J.; Reichwalder, P.; et al. Geological Map of the High Tatra Mountains 1:50 000 Scale; State Geological Institute of Dionýz Štúr: Bratislava, Slovakia, 1994. [Google Scholar]
- Lukniš, M. Reliéf Vysokých Tatier a ich predpolia; Vydavateľstvo Slovenskej akadémie vied: Bratislava, Slovakia, 1973. [Google Scholar]
- Bochníček, O. Climate Atlas of Slovakia; Slovak Hydrometeorological Institute: Bratislava, Slovakia, 2015; p. 131. [Google Scholar]
- Ministry of Environment of Slovak Republic. Zákon 543 o ochrane prírody a krajiny. In Zbierka Zákonov Slovenskej Republiky; Ministry of Environment of Slovak Republic: Bratislava, Slovakia, 2002. [Google Scholar]
- Du, S.; Liu, J.; Zhang, C.; Zhu, J.; Li, K. Probability iterative closest point algorithm for m-D point set registration with noise. Neurocomputing 2015, 157, 187–198. [Google Scholar] [CrossRef]
- Ullrich, A.; Schwarz, R.; Kager, H. Using hybrid multi-station adjustment for an integrated camera laser-scanner system. Opt. 3-D Meas. Tech. IV 2003, 1, 298–305. [Google Scholar]
- Hofierka, J.; Parajka, J.; Mitasova, H.; Mitas, L. Multivariate Interpolation of Precipitation Using Regularized Spline with Tension. Trans. GIS 2002, 6, 135–150. [Google Scholar] [CrossRef]
- Hofierka, J.; Lacko, M.; Zubal, S. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP. Comput. Geosci. 2017, 107, 20–27. [Google Scholar] [CrossRef]
- Mitášová, H.; Mitáš, Ľ. Interpolation with regularized spline with tension: I. Theory and implementation. Math. Geol. 1993, 25, 641–655. [Google Scholar] [CrossRef]
- Mitášová, H.; Hofierka, J. Interpolation with regularized spline with tension: II. Application to terrain modelling and surface geometry analysis. Math. Geol. 1993, 25, 657–669. [Google Scholar] [CrossRef]
- Gallay, M.; Hochmuth, Z.; Kaňuk, J.; Hofierka, J. Geomorphometric analysis of cave ceiling channel mapped with 3-D terrestrial laser scanning. Hydrol. Earth Syst. Sci. 2016, 20, 1827–1849. [Google Scholar] [CrossRef]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson reconstruction. In Eurographics Symposium on Geometry Processing; Polthier, K., Sheffer, A., Eds.; The Eurographics Association: Geneve, Switzerland, 2006; pp. 61–70. [Google Scholar]
- NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. USGS Earth Explorer home page. Available online: https://earthexplorer.usgs.gov/ (accessed on 6 September 2019).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Rodriguez, E.; Morris, C.H.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The new global DEM takes shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuraccy assessment of the global TanDEM-X digital elevation model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Grohmann, C.H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Gann, D.; Ross, M.; Robertson, Q.; Sarmiento, J.; Santana, S.; Rhome, J.; Fritz, C. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 2019, 225, 290–306. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Lerma, J.L. Empirical study of variation in lidar point density over different land covers. Int. J. Remote Sens. 2014, 35, 3372–3383. [Google Scholar] [CrossRef]
- Centralny Ośrodek Dokumentacji Geodezyjnej i Kartograficznej. Numeryczne Dane Wysokościowe (Numerical height data). 2017. Available online: http://www.gugik.gov.pl/pzgik/zamow-dane/numeryczne-dane-wysokosciowe (accessed on 1 August 2019).
- Scopigno, R.; Callieri, M.; Delleppiane, M.; Ponchio, F.; Potenziani, M. Delivering and using 3D models on the web: Are we ready? Virtual Archaeol. Rev. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Rapidlasso GmbH. LAStools. Available online: https://rapidlasso.com/lastools/ (accessed on 1 August 2019).
- Potree. Available online: http://www.potree.org/. (accessed on 1 August 2019).
- Schuetz, M. Potree: Rendering Large Point Clouds in Web Browsers. Engineer Diploma Thesis, Vienna University of Technology, Vienna, Austria, 2016; p. 92. [Google Scholar]
- Scheiblauer, C. Interactions with Gigantic Point Clouds. Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2014; p. 203. [Google Scholar]
- Boulton, S.J.; Stokes, M. Which DEM is best for analysing fluvial landscape development in mountains terrains? Geomorphology 2018, 310, 168–187. [Google Scholar] [CrossRef]
- Minár, J.; Bandura, P.; Holec, J.; Popov, A.; Drăguţ, L.; Gallay, M.; Hofierka, J.; Kaňuk, J.; Evans, I.S. Physically-based land surface segmentation: Theoretical background and outline of interpretations. PeerJ Prepr. 2018, 6, e27075v1. [Google Scholar]
Data | Final Point Cloud | Final DEM |
---|---|---|
Number of GCPs | 104 | 104 |
Minimum | 0.003 | −2.137 |
Maximum | 0.380 | 0.025 |
Range | 0.377 | 2.162 |
Mean | 0.114 | −0.461 |
Mean of abs. values | 0.114 | 0.461 |
Variance | 0.007 | 0.118 |
Standard deviation | 0.086 | 0.342 |
RMSE | 0.143 | 0.574 |
5th percentile | 0.011 | −1.114 |
1st quartile | 0.045 | −0.604 |
Median | 0.102 | −0.366 |
3rd quartile | 0.170 | −0.245 |
95th percentile | 0.291 | −0.087 |
Data | SRTM | TanDEM-X 12 m | DMR3 10 m |
---|---|---|---|
Number of DEM cells | 1940 | 18 634 | 20 645 |
Minimum | −98.33 | −404.138 | −99.120 |
Maximum | 85.56 | 95.123 | 53.971 |
Range | 183.896 | 499.260 | 153.092 |
Mean | −2.440 | −17.447 | −0.439 |
Mean of abs. values | 14.044 | 21.364 | 4.447 |
Variance | 449.728 | 2290.010 | 57.065 |
Standard deviation | 21.207 | 47.854 | 7.554 |
RMSE | 21.346 | 50.935 | 7.567 |
5th percentile | −36.134 | −128.525 | −10.311 |
1st quartile | −10.439 | −6.063 | −3.028 |
Median | −3.365 | −0.267 | −0.367 |
3rd quartile | 5.059 | 1.113 | 1.935 |
95th percentile | 31.835 | 10.687 | 10.373 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šašak, J.; Gallay, M.; Kaňuk, J.; Hofierka, J.; Minár, J. Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sens. 2019, 11, 2154. https://doi.org/10.3390/rs11182154
Šašak J, Gallay M, Kaňuk J, Hofierka J, Minár J. Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sensing. 2019; 11(18):2154. https://doi.org/10.3390/rs11182154
Chicago/Turabian StyleŠašak, Ján, Michal Gallay, Ján Kaňuk, Jaroslav Hofierka, and Jozef Minár. 2019. "Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain" Remote Sensing 11, no. 18: 2154. https://doi.org/10.3390/rs11182154
APA StyleŠašak, J., Gallay, M., Kaňuk, J., Hofierka, J., & Minár, J. (2019). Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sensing, 11(18), 2154. https://doi.org/10.3390/rs11182154