Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes
"> Figure 1
<p>Framework for model development.</p> "> Figure 2
<p>Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC) microplankton size fractions (Fm): (<b>a</b>) random forests using features selected with SVM-RFE, (<b>b</b>) SVM using features selected with SVM-RFE, (<b>c</b>) SVM using ocean color features selected with SVM-RFE, and (<b>d</b>) three-component method. The dashed line is a 1:1 line, and the solid line is a regression line. Plot (<b>e</b>) shows the frequency distributions of their relative errors, and the numbers along the color ramp indicates the pixel density after log transformation (y = ln(x)).</p> "> Figure 3
<p>Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC) nanoplankton size fractions (Fn): (<b>a</b>) random forests using features selected with SVM-RFE, (<b>b</b>) SVM using features selected with SVM-RFE, (<b>c</b>) SVM using ocean color features selected with SVM-RFE, and (<b>d</b>) three-component method. The dashed line is a 1:1 line, and the solid is a regression line. Plot (<b>e</b>) shows the frequency distributions of their relative errors, and the numbers along the color ramp indicates the pixel density after log transformation (y = ln(x)).</p> "> Figure 4
<p>Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC) picoplankton size fractions (Fp): (<b>a</b>) random forests using features selected with SVM-RFE, (<b>b</b>) SVM using features selected with SVM-RFE, (<b>c</b>) SVM using ocean color features selected with SVM-RFE, and (<b>d</b>) three-component method. The dash line is 1:1 line, and the solid is regression line. Plot (<b>e</b>) shows the frequency distributions of their relative errors, and the numbers along the color ramp indicates the pixel density after log transformation (y = ln(x)).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. In-Situ Pigments
2.2. Satellite Data
2.3. Procedure for Matching Satellite and In Situ data
2.4. Feature Selection Techniques
2.5. Model Development
2.6. Modeling Framework
- (1)
- Two-thirds of the samples (483 samples) were randomly selected from NOMAD match-ups as a training dataset, and the left 241 samples were used as a validation dataset. Each input feature and phytoplankton size class was transformed to be dimensionless by standardization using the mean and standard deviation of training set.
- (2)
- Sensitive features were selected for each phytoplankton size class (i.e., Fm, Fn and Fp) using GA, SPA, and SVM-RFE, respectively. During feature selection, 10-fold cross validation was implemented for model selection, and Akaike information criterion [39] was used to select optimal features.
- (3)
- Statistical models were calibrated for each phytoplankton size class by using above-selected features with PLS, SVM, ANN and RF, respectively, and 10-fold cross validation was carried out to evaluate calibration performance.
- (4)
- After one model was calibrated with the training dataset, the validation dataset was used to test its performance.
- (5)
- To ensure the robustness of results, steps (1)–(4) were repeated 100 times, and the calibration and validation results from each iteration were compiled together for assessing model performance.
2.7. Result Comparison and Interpretation
3. Results
3.1. Microphytoplankton
3.2. Nanoplankton
3.3. Picoplankton
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Longhurst, A.R.; Glen Harrison, W. The biological pump: Profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 1989, 22, 47–123. [Google Scholar] [CrossRef]
- Boyd, P.; Newton, P. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep Sea Res. 1995, 42, 619–639. [Google Scholar] [CrossRef]
- Sieburth, J.M.; Smetacek, V.; Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Nair, A.; Sathyendranath, S.; Platt, T.; Morales, J.; Stuart, V.; Forget, M.-H.; Devred, E.; Bouman, H. Remote sensing of phytoplankton functional types. Remote Sens. Environ. 2008, 112, 3366–3375. [Google Scholar] [CrossRef]
- Bracher, A.; Bouman, H.A.; Brewin, R.J.; Bricaud, A.; Brotas, V.; Ciotti, A.M.; Hardman-Mountford, N.J. Obtaining phytoplankton diversity from ocean color: A scientific roadmap for future development. Front. Mar. Sci. 2017, 4, 55. [Google Scholar] [CrossRef]
- Brewin, R.J.; Sathyendranath, S.; Hirata, T.; Lavender, S.J.; Barciela, R.M.; Hardman-Mountford, N.J. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 2010, 221, 1472–1483. [Google Scholar] [CrossRef]
- Brewin, R.J.; Hardman-Mountford, N.J.; Lavender, S.J.; Raitsos, D.E.; Hirata, T.; Uitz, J.; Devred, E.; Bricaud, A.; Ciotti, A.; Gentili, B. An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sens. Environ. 2011, 115, 325–339. [Google Scholar] [CrossRef]
- Uitz, J.; Huot, Y.; Bruyant, F.; Babin, M.; Claustre, H. Relating phytoplankton photophysiological properties to community structure on large scales. Limnol. Oceanogr. 2008, 53, 614–630. [Google Scholar]
- Kostadinov, T.; Siegel, D.; Maritorena, S. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Hirata, T.; Aiken, J.; Hardman-Mountford, N.; Smyth, T.; Barlow, R. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 2008, 112, 3153–3159. [Google Scholar] [CrossRef]
- Lin, J.; Cao, W.; Zhou, W.; Sun, Z.; Xu, Z.; Wang, G.; Hu, S. Novel method for quantifying the cell size of marine phytoplankton based on optical measurements. Opt. Express 2014, 22, 10467–10476. [Google Scholar] [CrossRef] [PubMed]
- Raitsos, D.E.; Lavender, S.J.; Maravelias, C.D.; Haralabous, J.; Richardson, A.J.; Reid, P.C. Identifying four phytoplankton functional types from space: An ecological approach. Limnol. Oceanogr. 2008, 53, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Organelli, E.; Bricaud, A.; Antoine, D.; Uitz, J. Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the mediterranean sea (boussole site). Appl. Opt. 2013, 52, 2257–2273. [Google Scholar] [CrossRef] [PubMed]
- Torrecilla, E.; Stramski, D.; Reynolds, R.A.; Millán-Núñez, E.; Piera, J. Cluster analysis of hyperspectral optical data for discriminating phytoplankton pigment assemblages in the open ocean. Remote Sens. Environ. 2011, 115, 2578–2593. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, L.; Song, K.; Cassar, N. Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data. J. Geophys. Res. 2013, 118, 1445–1458. [Google Scholar] [CrossRef]
- Werdell, J.; Bailey, S. An improved bio-optical data set for ocean color algorithm development and satellite data product variation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Vidussi, F.; Claustre, H.; Manca, B.; Luchetta, A.; Marty, J. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern mediterranean sea during winter. J. Geophys. Res. 2001, 106, 19939–19956. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Mouw, C.; Yoder, J. Optical determination of phytoplankton size composition from global seawifs imagery. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Cao, W.; Wang, G.; Xu, Z.; Lin, J.; Zhao, W.; Yang, Y.; Zhou, W.; Sun, Z.; Yao, L. Comparison of Meris, Modis, Seawifs-derived particulate organic carbon, and in situ measurements in the South China Sea. Int. J. Remote Sens. 2016, 37, 1585–1600. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [Google Scholar] [CrossRef]
- Leardi, R.; Gonzalez, A.L. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemom. Intell. Lab. 1998, 41, 195–207. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, H.; Wang, J.; Wu, G. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection. Appl. Spectrosc. 2014, 68, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Wang, J.; Shi, T.; Liu, H.; Wu, G. Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation. Ecol. Indic. 2016, 67, 12–20. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374–3385. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. In Matrix Pencils; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [Google Scholar]
- de Jong, S. Simpls: An alternative approach to partial least squares regression. Chemom. Intell. Lab. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, O.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1997; pp. 155–161. [Google Scholar]
- Pelckmans, K.; Suykens, J.A.; Van Gestel, T.; De Brabanter, J.; Lukas, L.; Hamers, B.; De Moor, B.; Vandewalle, J. Ls-Svmlab: A MATLAB/C Toolbox for Least Squares Support Vector Machines; KULeuven-ESAT: Leuven, Belgium, 2002. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. Package’randomforest. Available online: http://stat.www.berkeley.edu/~breiman/RandomForests (accessed on 05 March 2018).
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin, Germany, 1998; pp. 199–213. [Google Scholar]
- Wu, G.; Cui, L.; Duan, H.; Fei, T.; Liu, Y. An approach for developing landsat-5 TM-based retrieval models of suspended particulate matter concentration with the assistance of modis. ISPRS J. Photogramm. 2013, 85, 84–92. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liu, H.; Shi, T.; Chen, Y.; Wang, J.; Fei, T.; Wu, G. Improving spectral estimation of soil organic carbon content through semi-supervised regression. Remote Sens. 2017, 9, 29. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Yoo, S.; Im, J.; Wagner, J.E. Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY. Landsc. Urban Plan. 2012, 107, 293–306. [Google Scholar] [CrossRef]
- Xu, S.; Lu, B.; Baldea, M.; Edgar, T.F.; Nixon, M. An improved variable selection method for support vector regression in nir spectral modeling. J. Process Control 2017. [Google Scholar] [CrossRef]
- Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F.-M. Remote sensing of phytoplankton groups in case 1 waters from global seawifs imagery. Deep Sea Res. 2005, 52, 1989–2004. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L. Band-ratio or spectral-curvature algorithms for satellite remote sensing? Appl. Opt. 2000, 39, 4377–4380. [Google Scholar] [CrossRef] [PubMed]
- Brotas, V.; Brewin, R.J.W.; Sá, C.; Brito, A.C.; Silva, A.; Mendes, C.R.; Diniz, T.; Kaufmann, M.; Tarran, G.; Groom, S.B.; et al. Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern atlantic ocean. Remote Sens. Environ. 2013, 134, 66–77. [Google Scholar] [CrossRef]
- Sammartino, M.; Di Cicco, A.; Marullo, S.; Santoleri, R. Spatio-temporal variability of micro-, nano-and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci. 2015, 11, 759. [Google Scholar] [CrossRef]
- Di Cicco, A.; Sammartino, M.; Marullo, S.; Santoleri, R. Regional empirical algorithms for an improved identification of Phytoplankton Functional Types and Size Classes in the Mediterranean Sea using satellite data. Front. Mar. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Lange, P.K.; Tilstone, G. Comparison of two methods to derive the size-structure of natural populations of phytoplankton. Deep Sea Res. 2014, 85, 72–79. [Google Scholar] [CrossRef]
Feature Selection | Modeling Techniques | R2CV | RMSECV | RRMSECV | R2V | RMSEV | RRMSEV |
---|---|---|---|---|---|---|---|
GA | PLS | 0.66 | 0.16 | 40.13% | 0.65 | 0.16 | 40.59% |
ANN | 0.72 | 0.15 | 36.56% | 0.72 | 0.15 | 36.675 | |
SVM | 0.75 | 0.14 | 35.04% | 0.74 | 0.14 | 35.43% | |
RF | 0.77 | 0.13 | 33.54% | 0.77 | 0.13 | 33.47% | |
SPA | PLS | 0.66 | 0.16 | 40.17% | 0.65 | 0.16 | 40.72% |
ANN | 0.72 | 0.15 | 36.75% | 0.72 | 0.15 | 36.94% | |
SVM | 0.74 | 0.14 | 35.22% | 0.73 | 0.14 | 36.01% | |
RF | 0.76 | 0.14 | 34.06% | 0.76 | 0.14 | 33.86% | |
SVM-RFE | PLS | 0.64 | 0.16 | 41.13% | 0.64 | 0.17 | 41.11% |
ANN | 0.72 | 0.15 | 36.50% | 0.72 | 0.15 | 36.68% | |
SVM | 0.75 | 0.14 | 34.55% | 0.74 | 0.14 | 35.82% | |
RF | 0.77 | 0.13 | 33.17% | 0.78 | 0.13 | 33.14% | |
-- a | PLS | 0.65 | 0.17 | 40.62% | 0.65 | 0.16 | 40.49% |
ANN | 0.72 | 0.15 | 36.49% | 0.73 | 0.14 | 36.18% | |
SVM | 0.75 | 0.14 | 34.58% | 0.75 | 0.14 | 34.95% | |
RF | 0.77 | 0.13 | 33.53% | 0.77 | 0.13 | 33.41% | |
-- b | Three-component | 0.50 | 0.20 | 50.33% | 0.49 | 0.20 | 50.78% |
SVM-RFE c | SVM | 0.61 | 0.17 | 44.72% | 0.59 | 0.18 | 44.59% |
Population | Maximum Chl a for Given Population | Initial Slope |
---|---|---|
Combined nano- and picoplankton | 0.766 mg/m3 () | 1.009 () |
Picoplankton | 0.102 mg/m3 () | 6.791 () |
GA | SPA | SVM-RFE | |||
---|---|---|---|---|---|
Features | Frequency | Features | Frequency | Features | Frequency |
Chl-a | 100 | CV(490, 510, 555) | 100 | PAR | 100 |
Wind stress | 100 | Chl-a | 100 | Month | 99 |
SST | 100 | SST | 100 | SST | 98 |
CV(490, 510, 555) | 99 | Wind stress | 97 | CV(490, 510, 555) | 97 |
CR(510) | 85 | CV(443, 490, 510) | 75 | CV(443, 490, 555) | 85 |
CR(443) | 64 | aph_443 | 61 | Rrs(510) | 83 |
Rrs(670) | 53 | CR(555) | 52 | Rrs(490) | 65 |
aph_443 | 53 | CR(443) | 51 | Wind stress | 56 |
CV(443, 490, 510) | 53 |
Feature Selection | Modeling Techniques | R2CV | RMSECV | RRMSECV | R2V | RMSEV | RRMSEV |
---|---|---|---|---|---|---|---|
GA | PLS | 0.34 | 0.14 | 45.48% | 0.31 | 0.14 | 46.12% |
ANN | 0.44 | 0.13 | 42.58% | 0.43 | 0.13 | 42.67% | |
SVM | 0.49 | 0.12 | 40.50% | 0.47 | 0.12 | 41.18% | |
RF | 0.54 | 0.12 | 38.75% | 0.53 | 0.12 | 38.67% | |
SPA | PLS | 0.34 | 0.14 | 45.60% | 0.31 | 0.14 | 46.38% |
ANN | 0.41 | 0.13 | 43.72% | 0.39 | 0.13 | 43.93% | |
SVM | 0.46 | 0.13 | 41.90% | 0.43 | 0.13 | 42.54% | |
RF | 0.50 | 0.12 | 40.39% | 0.49 | 0.12 | 40.40% | |
SVM-RFE | PLS | 0.27 | 0.15 | 48.53% | 0.26 | 0.15 | 48.80% |
ANN | 0.46 | 0.13 | 41.92% | 0.45 | 0.13 | 41.91% | |
SVM | 0.52 | 0.12 | 39.62% | 0.48 | 0.12 | 40.74% | |
RF | 0.56 | 0.11 | 37.82% | 0.56 | 0.11 | 37.73% | |
-- a | PLS | 0.32 | 0.14 | 46.38% | 0.31 | 0.14 | 46.29% |
ANN | 0.45 | 0.13 | 42.06% | 0.45 | 0.13 | 41.86% | |
SVM | 0.52 | 0.12 | 39.59% | 0.50 | 0.12 | 39.83% | |
RF | 0.54 | 0.12 | 38.58% | 0.54 | 0.12 | 38.48% | |
-- b | Three-component | 0.18 | 0.16 | 50.32% | 0.17 | 0.16 | 52.17% |
SVM-RFE c | SVM | 0.41 | 0.13 | 43.57% | 0.37 | 0.13 | 44.76% |
GA | SPA | SVM-RFE | |||
---|---|---|---|---|---|
Features | Frequency | Features | Frequency | Features | Frequency |
Month | 100 | CR(490) | 100 | Rrs(490) | 100 |
Chl-a | 100 | CV(490, 510, 555) | 100 | Month | 100 |
CR(490) | 95 | Chl-a | 100 | PAR | 100 |
CV(490, 510, 555) | 89 | aph_443 | 97 | Wind stress | 99 |
Rrs(412) | 86 | Month | 64 | CV(443, 490, 555) | 95 |
aph_443 | 74 | SST | 95 | ||
Wind stress | 62 | CV(490, 510, 555) | 92 | ||
Rrs(490) | 59 | CR(555) | 64 |
Feature Selection | Modeling Techniques | R2CV | RMSECV | RRMSECV | R2V | RMSEV | RRMSEV |
---|---|---|---|---|---|---|---|
GA | PLS | 0.74 | 0.12 | 38.02 | 0.73 | 0.12 | 37.94 |
ANN | 0.77 | 0.12 | 36.55 | 0.77 | 0.12 | 36.38 | |
SVM | 0.79 | 0.11 | 35.15 | 0.78 | 0.11 | 35.31 | |
RF | 0.80 | 0.11 | 34.51 | 0.81 | 0.11 | 34.21 | |
SPA | PLS | 0.74 | 0.12 | 37.98 | 0.73 | 0.12 | 37.94 |
ANN | 0.76 | 0.12 | 37.01 | 0.76 | 0.12 | 36.76 | |
SVM | 0.78 | 0.11 | 35.97 | 0.77 | 0.12 | 36.17 | |
RF | 0.80 | 0.11 | 35.18 | 0.80 | 0.11 | 34.90 | |
SVM-RFE | PLS | 0.72 | 0.13 | 38.80 | 0.73 | 0.13 | 38.27 |
ANN | 0.77 | 0.12 | 36.13 | 0.77 | 0.12 | 35.77 | |
SVM | 0.80 | 0.11 | 33.71 | 0.80 | 0.11 | 34.14 | |
RF | 0.82 | 0.11 | 33.45 | 0.82 | 0.10 | 33.09 | |
-- a | PLS | 0.73 | 0.13 | 38.68 | 0.73 | 0.13 | 38.30 |
ANN | 0.76 | 0.12 | 36.92 | 0.76 | 0.12 | 36.36 | |
SVM | 0.79 | 0.11 | 34.56 | 0.79 | 0.11 | 34.63 | |
RF | 0.80 | 0.11 | 34.77 | 0.80 | 0.11 | 34.39 | |
-- b | Three-component | 0.50 | 0.18 | 54.38 | 0.50 | 0.18 | 0.54 |
SVM-RFE c | SVM | 0.67 | 0.14 | 44.68 | 0.65 | 0.14 | 45.35 |
GA | SPA | SVM-RFE | |||
---|---|---|---|---|---|
Features | Frequency | Features | Frequency | Features | Frequency |
Wind stress | 100 | SST | 100 | CV(490, 510, 555) | 100 |
SST | 100 | CR(490) | 97 | Month | 100 |
CR(490) | 97 | Wind stress | 96 | PAR | 100 |
CV(490, 510, 555) | 73 | CV(490, 510, 555) | 85 | SST | 100 |
Month | 64 | CV(443, 490, 510) | 58 | Wind stress | 97 |
CV(443, 490, 555) | 57 | CV(443, 490, 555) | 74 | ||
Rrs(412) | 53 | Rrs(412) | 71 | ||
CR(555) | 68 | ||||
CR(510) | 62 | ||||
Rrs(490) | 54 |
1. Rrs(412) | 2. Rrs(490) | 3. CR(490) | 4. CR(510) | 5. CV(443, 490, 510) | 6. CV(443, 490, 555) | 7. CV(490, 510, 555) | 8. Month | 9. aph_443 | 10. Chl-a | 11. Wind Stress | 12. SST | 13. Fm | 14. Fn | 15. Fp | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 1.00 | ||||||||||||||
2. | 0.85 | 1.00 | |||||||||||||
3. | −0.56 | −0.38 | 1.00 | ||||||||||||
4. | −0.81 | −0.56 | 0.79 | 1.00 | |||||||||||
5. | −0.35 | −0.34 | 0.24 | 0.27 | 1.00 | ||||||||||
6. | 0.67 | 0.47 | −0.23 | −0.44 | 0.23 | 1.00 | |||||||||
7. | 0.36 | 0.24 | 0.04 | −0.10 | −0.12 | 0.65 | 1.00 | ||||||||
8. | −0.08 | −0.10 | −0.02 | 0.01 | 0.06 | −0.01 | −0.10 | 1.00 | |||||||
9. | −0.36 | −0.24 | −0.18 | 0.05 | −0.19 | −0.65 | −0.62 | 0.07 | 1.00 | ||||||
10. | −0.53 | −0.33 | 0.03 | 0.22 | 0.01 | −0.77 | −0.77 | 0.04 | 0.84 | 1.00 | |||||
11. | −0.16 | −0.21 | 0.06 | 0.14 | 0.13 | −0.03 | 0.11 | −0.18 | −0.05 | −0.05 | 1.00 | ||||
12. | 0.42 | 0.41 | −0.31 | −0.44 | −0.14 | 0.17 | −0.12 | 0.31 | −0.02 | −0.07 | −0.41 | 1.00 | |||
13. | −0.64 | −0.49 | 0.29 | 0.48 | 0.07 | −0.69 | −0.51 | −0.07 | 0.46 | 0.62 | 0.10 | −0.50 | 1.00 | ||
14. | 0.02 | 0.01 | 0.21 | 0.19 | 0.05 | 0.30 | 0.50 | −0.10 | −0.36 | −0.46 | 0.12 | −0.13 | −0.51 | 1.00 | |
15. | 0.72 | 0.57 | −0.48 | −0.68 | −0.11 | 0.58 | 0.23 | 0.15 | −0.28 | −0.40 | −0.20 | 0.67 | −0.80 | −0.11 | 1.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Liu, H.; Zhao, W.; Shi, T.; Hu, Z.; Li, Q.; Wu, G. Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes. Remote Sens. 2018, 10, 191. https://doi.org/10.3390/rs10030191
Hu S, Liu H, Zhao W, Shi T, Hu Z, Li Q, Wu G. Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes. Remote Sensing. 2018; 10(3):191. https://doi.org/10.3390/rs10030191
Chicago/Turabian StyleHu, Shuibo, Huizeng Liu, Wenjing Zhao, Tiezhu Shi, Zhongwen Hu, Qingquan Li, and Guofeng Wu. 2018. "Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes" Remote Sensing 10, no. 3: 191. https://doi.org/10.3390/rs10030191
APA StyleHu, S., Liu, H., Zhao, W., Shi, T., Hu, Z., Li, Q., & Wu, G. (2018). Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes. Remote Sensing, 10(3), 191. https://doi.org/10.3390/rs10030191