Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices
<p>Schematic of linear support vector regression (SVR) and the <span class="html-italic">ε</span>-intensive loss function (circles with black outline are support vectors).</p> ">
<p>Box-and-whiskers plots showing the differences between the with- and without-fungicide treatments across varieties for each sampling date. Significant differences were observed at the last two sampling dates (*, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01).</p> ">
<p>ROC plot shows the performances of MCARI/TCARI and SFR_R for the discriminating between the with- and without-fungicide treatments at the second sampling date (DAS 83). The area under ROC curves is 0.80 and 0.62 for MCARI/TCARI and SFR_R, respectively.</p> ">
<p>Box-and-whiskers plots showing the significant performance of MCARI/TCARI on discriminating between the with- and without-fungicide treatments. Significant (<span class="html-italic">p</span> < 0.01) differences between the with- and without-fungicide treatments were observed on each sampling date across all varieties (circle and plus signs show the means of the with- and without-fungicide treatments, respectively).</p> ">
<p>Scatter plots showing the relationships between LCC with (<b>a–j</b>) the ten fluorescence indices and (<b>k–t</b>) ten reflectance indices used in this study for the calibration data set.</p> ">
<p>Fitting second order polynomial regression models to the calibration data for (<b>a</b>) SFR_R, (<b>b</b>) BFRR_UV, (<b>c</b>) NBI_R, (<b>d</b>) ZM, (<b>e</b>) PRI and (<b>f</b>) OSAVI and validating each of the indices for predicting LCC using the independent validation data.</p> ">
<p>Measured-by-predicted values of LCC showing the validation results of (<b>a</b>) SFR_R, (<b>b</b>) BFRR_UV, (<b>c</b>) NBI_R, (<b>d</b>) ZM, (<b>e</b>) PRI and (<b>f</b>) OSAVI in predicting the LCC of the validation data set. Solid and dashed lines show the best linear fit and 1:1 lines, respectively.</p> ">
<p>Measured-by-predicted values of LCC showing the validation results of (<b>a</b>) PLSR model and (<b>b</b>) SVR model in predicting the LCC of the validation data set. Solid and dashed lines show the best linear fit and 1:1 lines, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Fluorescence Measurements
2.3. Hyperspectral Reflectance Measurements
2.4. Leaf Sampling and Chlorophyll Determination
2.5. Data Analysis
2.5.1. Binary Logistic Regression
2.5.2. Partial Least Squares Regression
2.5.3. Support Vector Regression
2.5.4. Model Validation
3. Results
3.1. Leaf Chlorophyll Concentration (LCC)
3.2. Discriminatory Performances of Fluorescence and Hyperspectral Indices
3.3. Relationships between LCC and Fluorescence and Hyperspectral Indices
3.4. Estimation of LCC
3.4.1. Polynomial Regression Model
3.4.2. PLSR and SVR models
4. Discussion
4.1. Early Detection of the Risk of Disease
4.2. Estimation of LCC
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J. Environ. Qual 2002, 31, 1433–1441. [Google Scholar]
- Delalieux, S.; van Aardt, J.; Keulemans, W.; Schrevens, E.; Coppin, P. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. Eur. J. Agron 2007, 27, 130–143. [Google Scholar]
- Bürling, K.; Hunsche, M.; Noga, G. Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precis. Agric 2010, 11, 703–716. [Google Scholar]
- Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev 2012, 32, 451–464. [Google Scholar]
- Chappelle, E.W.; Wood, F.M., Jr.; McMurtrey, J.E., III; Newcomb, W.W. Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation. Appl. Opt 1984, 23, 134–138. [Google Scholar]
- Chappelle, E.W.; McMurtrey, J.E., III; Wood, F.M., Jr.; Newcomb, W.W. Laser-induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn. Appl. Opt 1984, 23, 139–142. [Google Scholar]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant. Physiol 1996, 148, 4–14. [Google Scholar]
- Lang, M.; Lichtenthaler, H.K.; Sowinska, M.; Heisel, F.; Miehé, J.A. Fluorescence imaging of water and temperature stress in plant leaves. J. Plant. Physiol 1996, 148, 613–621. [Google Scholar]
- Leufen, G.; Noga, G.; Hunsche, M. Physiological response of sugar beet (Beta vulgaris) genotypes to a temporary water deficit, as evaluated with a multiparameter fluorescence sensor. Acta. Physiol. Plant 2013, 35, 1763–1774. [Google Scholar]
- Buschmann, C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth. Res 2007, 92, 261–271. [Google Scholar]
- Lejealle, S.; Evain, S.; Cerovic, Z.G. Multiplex: A New Diagnostic Tool for Management of Nitrogen Fertilization of Turfgrass. Proceedings of the 10th International Conference on Precision Agriculture, Denver, CO, USA, 18–21 July 2010.
- Lichtenthaler, H.K.; Babani, F. Light Adaptation and Senescence of the Photosynthetic Apparatus. Changes in Pigment Composition, Chlorophyll Fluorescence Parameters and Photosynthetic Activity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 713–736. [Google Scholar]
- Lichtenthaler, H.K.; Rinderle, U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem 1988, 19, S29–S85. [Google Scholar]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant. Physiol 1998, 152, 283–296. [Google Scholar]
- Lichtenthaler, H.K.; Miehé, J.A. Fluorescence imaging as a diagnostic tool for plant stress. Trend. Plant. Sci 1997, 2, 316–320. [Google Scholar]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens. Environ 1999, 69, 296–302. [Google Scholar]
- Babani, F.; Lichtenthaler, H.K. Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. J. Plant. Physiol 1996, 148, 555–566. [Google Scholar]
- Lichtenthaler, H.K.; Langsdorf, G.; Lenk, S.; Buschmann, C. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 2005, 43, 355–369. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst 2001, 58, 109–130. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ 2009, 113, S110–S122. [Google Scholar]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ 2003, 86, 542–553. [Google Scholar]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric 2010, 73, 165–173. [Google Scholar]
- Zheng, H.; Lu, H.; Zheng, Y.; Lou, H.; Chen, C. Automatic sorting of Chinese jujube (Zizyphus jujuba Mill. cv. ‘hongxing’) using chlorophyll fluorescence and support vector machine. J. Food Eng 2010, 101, 402–408. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens 2011, 66, 247–259. [Google Scholar]
- Römer, C.; Bürling, K.; Hunsche, M.; Rumpf, T.; Noga, G.; Plümer, L. Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines. Comput. Electron. Agric 2011, 79, 180–188. [Google Scholar]
- Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ 2007, 107, 348–361. [Google Scholar]
- Sun, D.; Li, Y.; Wang, Q.; Le, C.; Lv, H.; Huang, C.; Gong, S. A novel support vector regression model to estimate the phycocyanin concentration in turbid inland waters from hyperspectral reflectance. Hydrobiologia 2012, 680, 199–217. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory; John Wiley & Sons, Inc: New York, NY, USA, 1998. [Google Scholar]
- Bürling, K.; Hunsche, M.; Noga, G. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J. Plant. Physiol 2011, 168, 1641–1648. [Google Scholar]
- Zhang, Y.; Tremblay, N.; Zhu, J. A first comparison of Multiplex® for the assessment of corn nitrogen status. J. Food. Agric. Environ 2012, 10, 1008–1016. [Google Scholar]
- Agati, G.; Foschi, L.; Grossi, N.; Guglielminetti, L.; Cerovic, Z.G.; Volterrani, M. Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur. J. Agron 2013, 45, 39–51. [Google Scholar]
- Cerovic, Z.G.; Moise, N.; Agati, G.; Latouche, G.; Ben Ghozlen, N.; Meyer, S. New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. J. Food Compos. Anal 2008, 21, 650–654. [Google Scholar]
- Buschmann, C.; Lichtenthaler, H.K. Principles and characteristics of multi-colour fluorescence imaging of plants. J. Plant. Physiol 1998, 152, 297–314. [Google Scholar]
- Langsdorf, G.; Buschmann, C.; Sowinska, M.; Babani, F.; Mokry, M.; Timmermann, F.; Lichtenthaler, H.K. Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 2000, 38, 539–551. [Google Scholar]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.; Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res 2005, 91, 35–49. [Google Scholar]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sens. Environ 2000, 74, 596–608. [Google Scholar]
- Delalieux, S.; Auwerkerken, A.; Verstraeten, W.; Somers, B.; Valcke, R.; Lhermitte, S.; Keulemans, J.; Coppin, P. Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves. Remote Sens 2009, 1, 858–874. [Google Scholar]
- Delalieux, S.; Somers, B.; Verstraeten, W.W.; van Aardt, J.A.N.; Keulemans, W.; Coppin, P. Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. Int. J. Remote Sens 2009, 30, 1887–1912. [Google Scholar]
- Miphokasap, P.; Honda, K.; Vaiphasa, C.; Souris, M.; Nagai, M. Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy. Remote Sens 2012, 4, 1651–1670. [Google Scholar]
- Ben Ghozlen, N.; Cerovic, Z.G.; Germain, C.; Toutain, S.; Latouche, G. Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 2010, 10, 10040–10068. [Google Scholar]
- Yu, K.; Lenz-Wiedemann, V.; Leufen, G.; Hunsche, M.; Noga, G.; Chen, X.; Bareth, G. Assessing hyperspectral vegetation indices for estimating leaf chlorophyll concentration of summer barley. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2012. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ 1998, 66, 273–285. [Google Scholar]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens 2001, 39, 1491–1507. [Google Scholar]
- Peñuelas, J.; Filella, I.; Lloret, P.; Muñoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens 1995, 16, 2727–2733. [Google Scholar]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ 1992, 41, 35–44. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ 2000, 74, 229–239. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ 2002, 81, 416–426. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ 1996, 55, 95–107. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc: New York, NY, USA, 2000. [Google Scholar]
- Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares. In Multivariate Analysis; Krishnaiaah, P.R., Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Wold, S. Personal memories of the early PLS development. Chemometr. Intell. Lab. Syst 2001, 58, 83–84. [Google Scholar]
- Wold, S.; Kettaneh-Wold, N.; Skagerberg, B. Nonlinear PLS modeling. Chemometr. Intell. Lab. Syst 1989, 7, 53–65. [Google Scholar]
- Rosipal, R.; Krämer, N. Overview and Recent Advances in Partial Least Squares. In Subspace, Latent Structure and Feature Selection; Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J., Eds.; Springer-Verlag: Berlin, Germany, 2006; Volume 3940, pp. 34–51. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 9.2 User’s Guide; SAS Institute Inc: Cary, NC, USA, 2008. [Google Scholar]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem 1988, 60, 1193–1202. [Google Scholar]
- Van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemometr. Intell. Lab. Syst 1994, 25, 313–323. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput 2004, 14, 199–222. [Google Scholar]
- Yang, F.; White, M.A.; Michaelis, A.R.; Ichii, K.; Hashimoto, H.; Votava, P.; Zhu, A.X.; Nemani, R.R. Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Trans. Geosci. Remote Sens 2006, 44, 3452–3461. [Google Scholar]
- Chang, C.; Lin, C. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol 2011, 2, 1–27. [Google Scholar]
- Ounis, A.; Cerovic, Z.G.; Briantais, J.M.; Moya, I. Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies. Remote Sens. Environ 2001, 76, 33–48. [Google Scholar]
- Heisel, F.; Sowinska, M.; Miehé, J.A.; Lang, M.; Lichtenthaler, H.K. Detection of nutrient deficiencies of maize by laser induced fluorescence imaging. J. Plant. Physiol 1996, 148, 622–631. [Google Scholar]
- Agati, G.; Pinelli, P.; Cortes Ebner, S.; Romani, A.; Cartelat, A.; Cerovic, Z.G. Nondestructive evaluation of anthocyanins in Olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. J. Agric. Food Chem 2005, 53, 1354–1363. [Google Scholar]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. Available online: http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf (accessed on 1 November 2013).
- Thissen, U.; Pepers, M.; Üstün, B.; Melssen, W.J.; Buydens, L.M.C. Comparing support vector machines to PLS for spectral regression applications. Chemometr. Intell. Lab. Syst 2004, 73, 169–179. [Google Scholar]
- Yu, H.; Lin, H.; Xu, H.; Ying, Y.; Li, B.; Pan, X. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy. J. Agric. Food Chem 2008, 56, 307–313. [Google Scholar]
- Borin, A.; Ferrão, M.F.; Mello, C.; Maretto, D.A.; Poppi, R.J. Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Anal. Chim. Acta 2006, 579, 25–32. [Google Scholar]
Index | Description | Formula |
---|---|---|
SFR_G | Simple Fluorescence Ratio (green excitation) | FRF_G/ RF_G |
SFR_R | Simple Fluorescence Ratio (red excitation) | FRF_R/ RF_R |
BFRR_UV | Blue-to-Far Red Fluorescence Ratio (UV excitation) | BGF_UV/ FRF_UV |
FER_RUV | Fluorescence Excitation Ratio (red & UV excitation) | FRF_R/ FRF_UV |
FLAV | Flavonols | log(FER_RUV) |
FER_RG | Fluorescence Excitation Ratio (red & green excitation) | FRF_R/ FRF_G |
ANTH | Anthocyanins | log(FER_RG) |
NBI_G | Nitrogen Balance Index (SFR_G/FER_RUV) | FRF_UV/ RF_G |
NBI_R | Nitrogen Balance Index (SFR_R/FER_RUV) | FRF_UV/ RF_R |
FERARI | Fluorescence Excitation Ratio Anthocyanin Relative Index | log(1/FRF_R) |
Index | Formula | Reference |
---|---|---|
PSSRa | R800/R680 | Blackburn [43] |
ZM | R750/R710 | Zarco-Tejada et al. [44] |
NPQI | (R415 − R435)/(R415 + R435) | Peñuelas et al. [45] |
PRI | (R531 − R570)/(R531 + R570) | Gamon et al. [46] |
MCARI | [(R700 − R670) − 0.2 × (R700 − R550)] × (R700/R670) | Daughtry et al. [47] |
TCARI | 3 × [(R700 − R670) − 0.2 × (R700 − R550) × (R700/R670)] | Haboudane et al. [48] |
OSAVI | (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) | Rondeaux et al. [49] |
MCARI/OSAVI | MCARI/OSAVI | Daughtry et al. [47] |
TCARI/OSAVI | TCARI/OSAVI | Haboudane et al. [48] |
MCARI/TCARI | MCARI/TCARI | Based on [47,48] |
Source | DF | F | P |
---|---|---|---|
Fungicide | 1 | 17.63 | 0.0002 |
Variety | 6 | 17.10 | <0001 |
Fungicide × Variety | 6 | 1.85 | 0.1244 |
Date | 4 | 246.98 | <0001 |
Date × Fungicide | 4 | 3.50 | 0.0099 |
Date × Variety | 24 | 1.31 | 0.1731 |
Date × Fungicide × Variety | 24 | 0.54 | 0.9588 |
DAS | Index | Belana | Marthe | Scarlett | Iron | Sunshine | Barke | Bambina | All |
---|---|---|---|---|---|---|---|---|---|
77 | SFR_G | 0.51 | 0.58 | 0.62 | 0.56 | 0.64 | 0.70 | 0.54 | 0.52 |
SFR_R | 0.56 | 0.61 | 0.60 | 0.52 | 0.61 | 0.67 | 0.50 | 0.50 | |
BFRR_UV | 0.69 | 0.54 | 0.55 | 0.54 | 0.53 | 0.70 | 0.62 | 0.55 | |
FER_RUV | 0.53 | 0.56 | 0.51 | 0.47 | 0.53 | 0.73 | 0.53 | 0.51 | |
FLAV | 0.54 | 0.56 | 0.51 | 0.53 | 0.54 | 0.73 | 0.54 | 0.51 | |
FER_RG | 0.57 | 0.54 | 0.54 | 0.54 | 0.52 | 0.63 | 0.57 | 0.52 | |
ANTH | 0.56 | 0.54 | 0.54 | 0.55 | 0.52 | 0.62 | 0.57 | 0.53 | |
NBI_G | 0.51 | 0.50 | 0.52 | 0.60 | 0.52 | 0.65 | 0.47 | 0.52 | |
NBI_R | 0.51 | 0.52 | 0.50 | 0.57 | 0.52 | 0.68 | 0.47 | 0.52 | |
FERARI | 0.73 | 0.53 | 0.60 | 0.73 | 0.65 | 0.72 | 0.73 | 0.56 | |
83 | SFR_G | 0.55 | 0.65 | 0.58 | 0.83 | 0.55 | 0.65 | 0.52 | 0.61 |
SFR_R | 0.53 | 0.65 | 0.54 | 0.86 | 0.59 | 0.65 | 0.47 | 0.62 | |
BFRR_UV | 0.52 | 0.57 | 0.62 | 0.81 | 0.58 | 0.67 | 0.72 | 0.59 | |
FER_RUV | 0.62 | 0.58 | 0.57 | 0.87 | 0.54 | 0.53 | 0.64 | 0.55 | |
FLAV | 0.63 | 0.58 | 0.57 | 0.87 | 0.55 | 0.53 | 0.64 | 0.55 | |
FER_RG | 0.72 | 0.55 | 0.60 | 0.67 | 0.55 | 0.64 | 0.56 | 0.54 | |
ANTH | 0.72 | 0.53 | 0.59 | 0.66 | 0.55 | 0.63 | 0.56 | 0.55 | |
NBI_G | 0.64 | 0.68 | 0.61 | 0.70 | 0.49 | 0.50 | 0.60 | 0.49 | |
NBI_R | 0.67 | 0.67 | 0.60 | 0.71 | 0.50 | 0.51 | 0.61 | 0.51 | |
FERARI | 0.70 | 0.54 | 0.71 | 0.52 | 0.68 | 0.70 | 0.75 | 0.58 | |
90 | SFR_G | 0.52 | 0.62 | 0.79 | 0.61 | 0.77 | 0.66 | 0.55 | 0.60 |
SFR_R | 0.54 | 0.60 | 0.81 | 0.60 | 0.76 | 0.67 | 0.51 | 0.61 | |
BFRR_UV | 0.59 | 0.54 | 0.58 | 0.62 | 0.60 | 0.54 | 0.83 | 0.54 | |
FER_RUV | 0.50 | 0.59 | 0.73 | 0.53 | 0.50 | 0.63 | 0.79 | 0.51 | |
FLAV | 0.51 | 0.59 | 0.73 | 0.57 | 0.53 | 0.63 | 0.79 | 0.51 | |
FER_RG | 0.82 | 0.68 | 0.68 | 0.61 | 0.62 | 0.70 | 0.46 | 0.62 | |
ANTH | 0.81 | 0.68 | 0.67 | 0.60 | 0.62 | 0.71 | 0.48 | 0.62 | |
NBI_G | 0.58 | 0.66 | 0.54 | 0.64 | 0.60 | 0.47 | 0.78 | 0.54 | |
NBI_R | 0.53 | 0.66 | 0.56 | 0.62 | 0.61 | 0.55 | 0.78 | 0.53 | |
FERARI | 0.65 | 0.67 | 0.54 | 0.58 | 0.57 | 0.82 | 0.89 | 0.64 | |
97 | SFR_G | 0.63 | 0.54 | 0.65 | 0.55 | 0.63 | 0.67 | 0.69 | 0.61 |
SFR_R | 0.64 | 0.52 | 0.65 | 0.54 | 0.66 | 0.68 | 0.69 | 0.62 | |
BFRR_UV | 0.82 | 0.71 | 0.55 | 0.65 | 0.64 | 0.66 | 0.88 | 0.65 | |
FER_RUV | 0.61 | 0.64 | 0.68 | 0.68 | 0.62 | 0.58 | 0.72 | 0.56 | |
FLAV | 0.61 | 0.64 | 0.68 | 0.68 | 0.62 | 0.58 | 0.72 | 0.56 | |
FER_RG | 0.52 | 0.50 | 0.53 | 0.50 | 0.51 | 0.64 | 0.54 | 0.53 | |
ANTH | 0.52 | 0.49 | 0.54 | 0.51 | 0.51 | 0.64 | 0.54 | 0.53 | |
NBI_G | 0.65 | 0.61 | 0.57 | 0.67 | 0.60 | 0.70 | 0.79 | 0.60 | |
NBI_R | 0.63 | 0.62 | 0.58 | 0.64 | 0.59 | 0.69 | 0.78 | 0.59 | |
FERARI | 0.78 | 0.80 | 0.62 | 0.53 | 0.74 | 0.67 | 0.84 | 0.63 | |
104 | SFR_G | 0.58 | 0.65 | 0.57 | 0.58 | 0.56 | 0.47 | 0.61 | 0.53 |
SFR_R | 0.56 | 0.63 | 0.55 | 0.56 | 0.53 | 0.54 | 0.63 | 0.51 | |
BFRR_UV | 0.79 | 0.54 | 0.52 | 0.57 | 0.61 | 0.69 | 0.63 | 0.61 | |
FER_RUV | 0.67 | 0.50 | 0.66 | 0.54 | 0.72 | 0.67 | 0.53 | 0.59 | |
FLAV | 0.67 | 0.50 | 0.65 | 0.50 | 0.72 | 0.67 | 0.55 | 0.59 | |
FER_RG | 0.65 | 0.55 | 0.49 | 0.54 | 0.60 | 0.70 | 0.67 | 0.57 | |
ANTH | 0.65 | 0.55 | 0.48 | 0.54 | 0.60 | 0.70 | 0.67 | 0.57 | |
NBI_G | 0.56 | 0.57 | 0.48 | 0.46 | 0.65 | 0.57 | 0.42 | 0.54 | |
NBI_R | 0.62 | 0.58 | 0.51 | 0.45 | 0.67 | 0.62 | 0.61 | 0.55 | |
FERARI | 0.66 | 0.54 | 0.52 | 0.52 | 0.61 | 0.59 | 0.69 | 0.57 |
DAS | Index | Belana | Marthe | Scarlett | Iron | Sunshine | Barke | Bambina | All |
---|---|---|---|---|---|---|---|---|---|
77 | PSSRa | 0.45 | 0.61 | 0.52 | 0.77 | 0.70 | 0.80 | 0.68 | 0.50 |
ZM | 0.60 | 0.72 | 0.55 | 0.71 | 0.67 | 0.84 | 0.80 | 0.57 | |
NPQI | 0.76 | 0.62 | 0.72 | 0.69 | 0.67 | 0.79 | 0.82 | 0.68 | |
PRI | 0.64 | 0.56 | 0.49 | 0.55 | 0.58 | 0.55 | 0.58 | 0.46 | |
MCARI | 0.72 | 0.80 | 0.59 | 0.52 | 0.65 | 0.87 | 0.92 | 0.61 | |
TCARI | 0.65 | 0.68 | 0.52 | 0.54 | 0.69 | 0.84 | 0.83 | 0.53 | |
OSAVI | 0.72 | 0.56 | 0.54 | 0.63 | 0.54 | 0.68 | 0.45 | 0.52 | |
MCARI/OSAVI | 0.74 | 0.81 | 0.59 | 0.44 | 0.65 | 0.86 | 0.90 | 0.62 | |
TCARI/OSAVI | 0.59 | 0.69 | 0.51 | 0.60 | 0.70 | 0.84 | 0.82 | 0.54 | |
MCARI/TCARI | 0.99 | 0.90 | 0.70 | 0.59 | 0.56 | 0.88 | 0.89 | 0.73 | |
83 | PSSRa | 0.59 | 0.70 | 0.82 | 0.99 | 0.87 | 0.95 | 0.85 | 0.59 |
ZM | 0.49 | 0.80 | 0.77 | 0.98 | 0.80 | 0.94 | 0.70 | 0.53 | |
NPQI | 0.71 | 0.57 | 0.63 | 0.61 | 0.55 | 0.65 | 0.74 | 0.61 | |
PRI | 0.63 | 0.49 | 0.82 | 0.86 | 0.90 | 0.75 | 0.86 | 0.69 | |
MCARI | 0.85 | 0.68 | 0.68 | 0.54 | 0.65 | 0.93 | 0.79 | 0.66 | |
TCARI | 0.71 | 0.49 | 0.58 | 0.57 | 0.68 | 0.98 | 0.58 | 0.55 | |
OSAVI | 0.58 | 0.62 | 0.78 | 0.73 | 0.74 | 0.64 | 0.70 | 0.59 | |
MCARI/OSAVI | 0.86 | 0.74 | 0.64 | 0.56 | 0.69 | 0.93 | 0.78 | 0.65 | |
TCARI/OSAVI | 0.69 | 0.62 | 0.52 | 0.65 | 0.77 | 0.98 | 0.54 | 0.52 | |
MCARI/TCARI | 1.00 | 0.88 | 0.95 | 0.73 | 0.51 | 0.81 | 0.96 | 0.80 | |
90 | PSSRa | 0.82 | 0.51 | 0.98 | 1.00 | 1.00 | 0.73 | 1.00 | 0.77 |
ZM | 0.65 | 0.62 | 0.95 | 1.00 | 0.92 | 0.85 | 1.00 | 0.71 | |
NPQI | 0.96 | 0.74 | 0.96 | 0.84 | 0.58 | 0.77 | 0.97 | 0.78 | |
PRI | 0.86 | 0.70 | 0.98 | 1.00 | 1.00 | 0.65 | 1.00 | 0.86 | |
MCARI | 1.00 | 0.75 | 0.98 | 0.71 | 0.55 | 0.89 | 0.70 | 0.80 | |
TCARI | 0.92 | 0.70 | 0.84 | 0.55 | 0.65 | 0.90 | 0.55 | 0.66 | |
OSAVI | 0.95 | 0.69 | 1.00 | 1.00 | 0.93 | 0.65 | 0.97 | 0.83 | |
MCARI/OSAVI | 0.99 | 0.75 | 0.90 | 0.49 | 0.56 | 0.88 | 0.56 | 0.72 | |
TCARI/OSAVI | 0.71 | 0.71 | 0.50 | 0.78 | 0.76 | 0.90 | 0.71 | 0.53 | |
MCARI/TCARI | 1.00 | 0.81 | 1.00 | 0.90 | 0.80 | 0.77 | 1.00 | 0.83 | |
97 | PSSRa | 0.82 | 0.85 | 1.00 | 0.95 | 0.93 | 0.97 | 0.99 | 0.88 |
ZM | 0.88 | 0.81 | 1.00 | 1.00 | 0.95 | 0.94 | 1.00 | 0.88 | |
NPQI | 0.52 | 0.80 | 0.85 | 0.86 | 0.78 | 0.88 | 0.88 | 0.76 | |
PRI | 0.73 | 0.88 | 0.94 | 0.96 | 0.96 | 0.89 | 0.98 | 0.89 | |
MCARI | 0.51 | 0.65 | 0.90 | 0.74 | 1.00 | 0.84 | 0.71 | 0.73 | |
TCARI | 0.77 | 0.59 | 0.67 | 0.63 | 0.93 | 0.51 | 0.50 | 0.54 | |
OSAVI | 0.77 | 0.78 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 0.87 | |
MCARI/OSAVI | 0.69 | 0.52 | 0.66 | 0.49 | 0.97 | 0.66 | 0.62 | 0.56 | |
TCARI/OSAVI | 0.83 | 0.70 | 0.74 | 0.64 | 0.76 | 0.72 | 0.82 | 0.67 | |
MCARI/TCARI | 0.76 | 0.86 | 1.00 | 0.74 | 0.77 | 0.97 | 0.93 | 0.82 | |
104 | PSSRa | 0.77 | 0.93 | 1.00 | 0.99 | 0.86 | 0.98 | 0.96 | 0.90 |
ZM | 0.80 | 0.94 | 1.00 | 1.00 | 0.84 | 0.98 | 0.97 | 0.91 | |
NPQI | 0.72 | 0.83 | 0.89 | 0.90 | 0.75 | 0.96 | 0.86 | 0.82 | |
PRI | 0.85 | 0.84 | 0.62 | 0.94 | 0.84 | 0.90 | 0.87 | 0.78 | |
MCARI | 0.78 | 0.91 | 1.00 | 0.94 | 0.99 | 0.97 | 0.93 | 0.88 | |
TCARI | 0.79 | 0.88 | 1.00 | 0.87 | 0.96 | 0.89 | 0.86 | 0.85 | |
OSAVI | 0.80 | 0.94 | 1.00 | 0.99 | 0.93 | 0.99 | 0.97 | 0.91 | |
MCARI/OSAVI | 0.74 | 0.71 | 0.97 | 0.78 | 0.94 | 0.60 | 0.50 | 0.70 | |
TCARI/OSAVI | 0.50 | 0.54 | 0.85 | 0.50 | 0.75 | 0.80 | 0.78 | 0.52 | |
MCARI/TCARI | 0.73 | 0.91 | 1.00 | 0.98 | 0.83 | 0.98 | 0.96 | 0.88 |
Model | Descriptions | Calibration | Validation | ||
---|---|---|---|---|---|
R2 | RMSEc (μg/g) | R2 | RMSEv (μg/g) | ||
SFR_R | Polynomial | 0.57 | 1,927.3 | 0.46 | 1,863.8 |
BFRR_UV | Polynomial | 0.73 | 1,524.0 | 0.72 | 1,376.3 |
NBI_R | Polynomial | 0.52 | 2,040.6 | 0.42 | 1,952.3 |
ZM | Polynomial | 0.74 | 1500.9 | 0.76 | 1,283.5 |
PRI | Polynomial | 0.75 | 1,471.8 | 0.75 | 1,319.5 |
OSAVI | Polynomial | 0.72 | 1,549.0 | 0.79 | 1,155.5 |
PLSR | 6 Factors | 0.84 | 1,188.1 | 0.81 | 1,111.0 |
SVR | RBF kernel | 0.86 | 1,094.9 | 0.84 | 1,021.9 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yu, K.; Leufen, G.; Hunsche, M.; Noga, G.; Chen, X.; Bareth, G. Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices. Remote Sens. 2014, 6, 64-86. https://doi.org/10.3390/rs6010064
Yu K, Leufen G, Hunsche M, Noga G, Chen X, Bareth G. Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices. Remote Sensing. 2014; 6(1):64-86. https://doi.org/10.3390/rs6010064
Chicago/Turabian StyleYu, Kang, Georg Leufen, Mauricio Hunsche, Georg Noga, Xinping Chen, and Georg Bareth. 2014. "Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices" Remote Sensing 6, no. 1: 64-86. https://doi.org/10.3390/rs6010064
APA StyleYu, K., Leufen, G., Hunsche, M., Noga, G., Chen, X., & Bareth, G. (2014). Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices. Remote Sensing, 6(1), 64-86. https://doi.org/10.3390/rs6010064