Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers
"> Figure 1
<p>SEM images and XRD patterns of the nanofiller samples: (a) V, (b) ZnO/V and (c) ZnO/V_CH.</p> "> Figure 2
<p>FTIR spectra of the nanofiller samples: (a) V, (b) ZnO/V and (c) ZnO/V_CH.</p> "> Figure 3
<p>XRD patterns of the low-density polyethylene (LDPE) nanocomposite plates. (<b>A</b>): (a) LDPE, (b) LDPE_5% ZnO/V, (c) LDPE_3% ZnO/V, (d) LDPE_1% ZnO/V; (<b>B</b>): (a) LDPE, (b) LDPE_5% ZnO/V_CH, (c) LDPE_3% ZnO/V_CH, (d) LDPE_1% ZnO/V_CH.</p> "> Figure 4
<p>FTIR spectra of the original LDPE and LDPE_ZnO/V nanocomposite plates at regions (<b>a</b>) 3200–1400 cm<sup>−1</sup>, (<b>b</b>) 1400–800 cm<sup>−1</sup> and (<b>c</b>) 800–400 cm<sup>−1</sup>.</p> "> Figure 5
<p>FTIR spectra of the original LDPE and LDPE_ZnO/V_CH nanocomposite plates at regions (<b>a</b>) 3200–1400 cm<sup>−1</sup>, (<b>b</b>) 1400–800 cm<sup>−1</sup> and (<b>c</b>) 800–400 cm<sup>−1</sup>.</p> "> Figure 6
<p>SEM images of the natural LDPE surface and LDPE_1% ZnO/V, LDPE_3% ZnO/V, LDPE_5% ZnO/V, LDPE_1% ZnO/V_CH, LDPE_3% ZnO/V_CH and LDPE_5% ZnO/V_CH nanocomposite surfaces.</p> "> Figure 7
<p>3D AFM images of the natural LDPE surface and LDPE_1% ZnO/V, LDPE_3% ZnO/V, LDPE_5% ZnO/V, LDPE_1% ZnO/V_CH, LDPE_3% ZnO/V_CH and LDPE_5% ZnO/V_CH nanocomposite surfaces.</p> "> Figure 8
<p>The optical profilometry images against a steel ball after F2N_v5 tests of the natural LDPE surface and LDPE_1% ZnO/V, LDPE_3% ZnO/V, LDPE_5% ZnO/V, LDPE_1% ZnO/V_CH, LDPE_3% ZnO/V_CH and LDPE_5% ZnO/V_CH nanocomposites.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO–Vermiculite–Chlorhexidine Nanofillers
2.2. Preparation of the LDPE Nanocomposite Plates
2.3. Characterization Methods
2.4. Antimicrobial Activity
2.5. Tribo-Mechanical Properties
3. Results and Discussion
3.1. ZnO–Vermiculite–Chlorhexidine Nanofiller Characterization
3.2. LDPE Nanocomposite Plate Characterization
3.3. Antimicrobial Activity of the PVAc Nanocomposite Plates
3.4. Tribo-Mechanical Properties of the LDPE Nanocomposite Plates
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomé, I.P.S.; Dagostin, V.S.; Piletti, R.; Pich, C.T.; Riella, H.G.; Angioletto, E.; Fiori, M.A. Bactericidal Low Density Polyethylene (LDPE) urinary catheters: Microbiological characterization and effectiveness. Mater. Sci. Eng. C 2012, 32, 263–268. [Google Scholar] [CrossRef]
- Ramkumar, M.C.; Pandiyaraj, K.N.; Kumar, A.; Padmanabhan, P.V.A.; Kumar, U.S.; Gopinath, P.; Deshmukh, R.R. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment. Appl. Surf. Sci. 2018, 439, 991–998. [Google Scholar] [CrossRef]
- Kumar Sen, S.; Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. 2015, 3, 462–473. [Google Scholar] [CrossRef]
- Jacobs, T.; Morent, R.; De Geyter, N.; Dubruel, P.; Leys, C. Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem. Plasma Process 2012, 32, 1039–1073. [Google Scholar] [CrossRef]
- Tajima, S.; Komvopoulos, K. Dependence of nanomechanical modification of polymers on plasma-induced cross-linking. J. Appl. Phys. 2007, 101, 014307. [Google Scholar] [CrossRef]
- Shan, B.; Yan, H.; Shen, J.; Lin, S. Ozone-induced grafting of a sulfoammonium zwitterionic polymer onto low-density polyethylene film for improving hemocompatibility. J. Appl. 2006, 101, 3697–3703. [Google Scholar] [CrossRef]
- Kang, E.T.; Neoh, K.G.; Shi, J.L.; Tan, K.L.; Liaw, D.J. Surface Modification of Polymers for Adhesion Enhancement. Polym. Adv. Technol. 1999, 10, 20–29. [Google Scholar] [CrossRef]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Akinci, A.; Yilmaz, S.; Sen, U. Wear Behavior of Basalt Filled Low Density Polyethylene Composites. Appl. Compos. Mater. 2011, 19, 499–511. [Google Scholar] [CrossRef]
- Čech Barabaszová, K.; Holešová, S.; Hundáková, M.; Pazdziora, E.; Ritz, M. Antibacterial LDPE Nanocomposites Based on Zinc Oxide Nanoparticles/Vermiculite Nanofiller. J. Inorg. Organomet. Polym. Mater. 2017, 27, 986–995. [Google Scholar] [CrossRef]
- Brostow, W.; Datashvili, T.; Huang, B. Tribological Properties of Blends of Melamine-Formaldehyde Resin With Low Density Polyethylene. Polym. Eng. Sci. 2008, 48, 292–296. [Google Scholar] [CrossRef]
- Fornes, T.D.; Paul, D.R. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 2003, 44, 4993–5013. [Google Scholar] [CrossRef]
- Silvano, J.d.R.; Santa, R.A.A.B.; Martins, M.A.P.M.; Riella, H.G.; Soares, C.; Fiori, M.A. Nanocomposite of erucamide-clay applied for the control of friction coefficient in surfaces of LLDPE. Polym. Test. 2018, 67, 1–6. [Google Scholar] [CrossRef]
- Minkova, L.; Peneva, Y.; Valcheva, M.; Filippi, S.; Pracella, M.; Anguillesi, I.; Magagnini, P. Morphology, microhardness, and flammability of compatibilized polyethylene/clay nanocomposites. Polym. Eng. Sci. 2010, 50, 1306–1314. [Google Scholar] [CrossRef]
- Datta, D.; Samanta, S.; Halder, G. Surface functionalization of extracted nanosilica from rice husk for augmenting mechanical and optical properties of synthesized LDPE-Starch biodegradable film. Polym. Test. 2019, 77, 105878. [Google Scholar] [CrossRef]
- Reesha, K.V.; Panda, S.K.; Bindu, J.; Varghese, T.O. Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 2015, 79, 934–942. [Google Scholar] [CrossRef]
- El-Sayed, M.H.A.; EiD, A.I.; El-Sheikh, M.; Ali, W.Y. Effect of Graphene Nanoplatelets and Paraffin Oil Addition on the Mechanical and Tribological Properties of Low-Density Polyethylene Nanocomposites. Arab. J. Sci. Eng. 2018, 43, 1435–1443. [Google Scholar]
- Goyal, M.; Goyal, N.; Kaur, H.; Gera, A.; Minocha, K.; Jindal, P. Fabrication and characterisation of low density polyethylene (LDPE)/multi walled carbon nanotubes (MWCNTs) nano-composites. Perspect. Sci. 2016, 8, 403–405. [Google Scholar] [CrossRef] [Green Version]
- Majeed, K.; AlMaadeed, A.A.M.; Zagho, M.M. Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films. Chin. J. Chem. Eng. 2018, 26, 428–435. [Google Scholar] [CrossRef]
- Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Čech Barabaszová, K.; Holešová, S.; Šulcová, K.; Hundáková, M.; Thomasová, B. Effects of Ultrasound on Zinc Oxide/Vermiculite/Chlorhexidine Nanocomposite Preparation and Their Antibacterial Activity. Nanomaterials 2019, 9, 1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holešová, S.; Štembírek, J.; Bartošová, L.; Pražanová, G.; Valášková, M.; Samlíková, M.; Pazdziora, E. Antibacterial eficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite. Mater. Sci. Eng. C 2014, 42, 466–473. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gott. 1918, 2, 98–100. [Google Scholar]
- Farmer, V.C. The Infrared Spectra of Minerals; Farmer, V.C., Ed.; The Mineralogical Society: London, UK, 1974. [Google Scholar]
- Kajbafvala, A.; Zanganeh, S.; Kajbafvala, E.; Zargar, H.R.; Bayati, M.R.; Sadrnezhaad, S.K. Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. J. Alloys Compd. 2010, 497, 325–329. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, Tables and Charts, 3rd ed.; John Wiley & Sons Inc.: Chichester, UK, 2001. [Google Scholar]
- Holešová, S.; Reli, M.; Hundáková, M.; Čech Barabaszová, K.; Ritz, M.; Plevová, E.; Pazdziora, E. Synthesis and Antimicrobial Activity of Polyethylene/Chlorhexidine/Vermiculite Nanocomposites. J. Nanosci. Nanotechnol. 2019, 19, 2925–2933. [Google Scholar] [CrossRef] [PubMed]
- Das-Gupta, D.K. Polyethylene: Structure, Morphology, Molecular Motion and Dielectric Property Behavior. IEEE Electr. Insul. Mag. 1994, 10, 5–15. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D.S.; Darhouri, M.; Srinivasu, V.V. Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation. J. Phys. Conf. Ser. 2018, 984, 012010. [Google Scholar] [CrossRef]
- Čech Barabaszová, K.; Holešová, S.; Šulcová, K.; Ritz, M.; Kupková, J. Hybrid Antibacterial Nanocomposites Based on the Vermiculite/Zinc Oxide-Chlorhexidine. J. Nanosci. Nanotechnol. 2019, 19, 3041–3048. [Google Scholar] [CrossRef]
- Xanthos, M. Modification of Polymer Mechanical and Rheological Properties with Functional Fillers. In Functional Fillers for Plastics; Wiley Online Library: Weinheim, Germany, 2005; pp. 17–38. [Google Scholar]
Samples | Ra | RMS |
---|---|---|
(nm) | (nm) | |
LDPE | 21.8 (0.5) | 34.0 (0.8) |
LDPE_1% ZnO/V | 36.5 (3.1) | 57.8 (4.1) |
LDPE_3% ZnO/V | 29.3 (1.5) | 50.9 (3.0) |
LDPE_5% ZnO/V | 26.9 (1.1) | 37.8 (1.4) |
LDPE_1% ZnO/V_CH | 25.7 (0.6) | 45.9 (1.6) |
LDPE_3% ZnO/V_CH | 24.9 (4.1) | 41.9 (5.7) |
LDPE_5% ZnO/V_CH | 24.7 (0.5) | 34.1 (0.6) |
Samples | S. aureus | P. aeruginosa | ||||||
---|---|---|---|---|---|---|---|---|
Exposition Time (h) | ||||||||
24 | 48 | 72 | 96 | 24 | 48 | 72 | 96 | |
LDPE_1% ZnO/V | 368 | 313 | 122 | 289 | 179 | 59 | 30 | 2 |
LDPE_3% ZnO/V | 577 | 305 | 195 | 154 | 249 | 108 | 12 | 1 |
LDPE_5% ZnO/V | 549 | 279 | 133 | 118 | 191 | 42 | 0 | 3 |
LDPE_1% ZnO/V_CH | 267 | 122 | 100 | 430 | 238 | 93 | 19 | 4 |
LDPE_3% ZnO/V_CH | 108 | 111 | 70 | 710 | 192 | 104 | 13 | 1 |
LDPE_5% ZnO/V_CH | 286 | 175 | 63 | 118 | 202 | 127 | 15 | 5 |
Samples/Test Names | Friction Coefficient (-) | Abrasion Depth (µm) | |
---|---|---|---|
F2N_v5 | F1N_v1 | F1N_v1 | |
LDPE | 0.454 | 0.507 | 10.7 |
LDPE_1% ZnO/V | 0.465 | 0.480 | 9.7 |
LDPE_3% ZnO/V | 0.494 | 0.478 | 9.3 |
LDPE_5% ZnO/V | 0.508 | 0.490 | 9.5 |
LDPE_1% ZnO/V_CH | 0.480 | 0.560 | 13.1 |
LDPE_3% ZnO/V_CH | 0.479 | 0.470 | 14.1 |
LDPE_5% ZnO/V_CH | 0.457 | 0.451 | 11.6 |
Samples | HIT | HV | hm |
---|---|---|---|
(MPa) | (-) | (µm) | |
LDPE | 20.9 (1.6) | 2.0 (0.2) | 37.4 (1.8) |
LDPE_1% ZnO/V | 27.1 (0.5) | 2.6 (0.1) | 31.8 (0.2) |
LDPE_3% ZnO/V | 26.6 (0.7) | 2.5 (0.1) | 32.0 (0.3) |
LDPE_5% ZnO/V | 25.3 (1.3) | 2.4 (0.1) | 32.9 (0.7) |
LDPE_1% ZnO/V_CH | 27.2 (0.6) | 2.6 (0.1) | 31.7 (0.3) |
LDPE_3% ZnO/V_CH | 16.7 (1.4) | 1.6 (0.1) | 41.9 (1.7) |
LDPE_5% ZnO/V_CH | 23.0 (1.3) | 2.2 (0.1) | 34.8 (0.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čech Barabaszová, K.; Holešová, S.; Hundáková, M.; Kalendová, A. Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers 2020, 12, 2811. https://doi.org/10.3390/polym12122811
Čech Barabaszová K, Holešová S, Hundáková M, Kalendová A. Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers. 2020; 12(12):2811. https://doi.org/10.3390/polym12122811
Chicago/Turabian StyleČech Barabaszová, Karla, Sylva Holešová, Marianna Hundáková, and Alena Kalendová. 2020. "Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers" Polymers 12, no. 12: 2811. https://doi.org/10.3390/polym12122811
APA StyleČech Barabaszová, K., Holešová, S., Hundáková, M., & Kalendová, A. (2020). Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers, 12(12), 2811. https://doi.org/10.3390/polym12122811