Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose
"> Figure 1
<p>Fourier transform infrared (FTIR) spectra of neat carboxymethyl cellulose (CMC) (curve A), CMS/CMC based films for wt% ratio: 60/40 (B), 50/50 (C); and 40/60 (D), neat carboxymethyl starch (CMS) (E), and citric acid (F).</p> "> Figure 2
<p>Scheme of CMS/CMC crosslinking reaction with citric acid (CA), for the sake of clarity the reaction for molar ratio equal 1.0 was presented.</p> "> Figure 3
<p>Scheme of interaction between: (<b>A</b>) CMC-CMC and (<b>B</b>) CMS-CMS molecules.</p> "> Figure 4
<p>Picture of CMS/CMC 50/50 film.</p> "> Figure 5
<p>Laser scanning microscopy: (<b>a</b>) topographical images and (<b>b</b>) 3D images of CMS/CMC-based films.</p> "> Figure 5 Cont.
<p>Laser scanning microscopy: (<b>a</b>) topographical images and (<b>b</b>) 3D images of CMS/CMC-based films.</p> "> Figure 5 Cont.
<p>Laser scanning microscopy: (<b>a</b>) topographical images and (<b>b</b>) 3D images of CMS/CMC-based films.</p> "> Figure 6
<p>Roughness parameters <span class="html-italic">R</span><sub>z</sub> and <span class="html-italic">R</span><sub>a</sub> determined for CMS/CMC-based films.</p> "> Figure 7
<p>Moisture absorption of CMS/CMC films.</p> "> Figure 8
<p>The dynamic mechanical thermal analyses (DMTA) curves of CMS/CMC films.</p> "> Figure 9
<p>Typical true stress versus true strain curves of CMS/CMC films.</p> "> Figure 10
<p>Tensile strength (<b>A</b>), Young’s modulus (<b>B</b>) and elongation at break (<b>C</b>) of CMS/CMC films.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CMS with High Degree of Substitution
2.3. Preparation of CMS/CMC Films
2.4. Methods
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2. Morphology of CMS/CMC Films
3.3. Moisture Absorption
3.4. Dynamic Mechanical Thermal Analysis (DMTA)
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Spychaj, T.; Wilpiszewska, K.; Zdanowicz, M. Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch 2013, 65, 22–33. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind. Crops Prod. 2011, 33, 229–235. [Google Scholar] [CrossRef]
- Kittipongpatana, O.S.; Chaitep, W.; Charumanee, S.; Kittipongpatana, N. Effects of amylose content on the physicochemical properties of sodium carboxymethyl rice starches. CMU J. Nat. Sci. 2006, 5, 199–207. [Google Scholar]
- Kim, K.W.; Ko, C.J.; Park, H.J. Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch-based edible films. J. Food Sci. 2002, 67, 218–222. [Google Scholar] [CrossRef]
- Kittipongpatana, O.S.; Chaichanasak, N.; Kanchongkittipoan, S.; Panturat, A.; Taekanmark, T.; Kittipongpatana, N. An aqueous film-coating formulation based on sodium carboxymethyl mungbean starch. Starch 2006, 58, 587–589. [Google Scholar] [CrossRef]
- Kittipongpatana, N.; Janta, S.; Kittipongpatana, O. Preparation of cross-linked carboxymethyl jackfruit starch and evaluation as tablet disintegrant. Pak. J. Pharm. Sci. 2011, 24, 415–420. [Google Scholar]
- Anirudhan, T.S.; Parvathy, J. Novel semi-IPN based on crosslinked carboxymethyl starch and clay for the in vitro release of theophylline. Int. J. Biol. Macromol. 2014, 67, 238–245. [Google Scholar] [CrossRef]
- Kittipongpatana, N.; Kittipongpatana, O.S. Cross-linked carboxymethyl mung bean starch as pharmaceutical gelling agent and emulsion stabilizer. Int. J. Pharm. Pharm. Sci. 2015, 7, 403–407. [Google Scholar]
- Lawal, O.S.; Storz, J.; Storz, H.; Lohmann, D.; Lechner, D.; Kulicke, W.M. Hydrogels based on carboxymethyl cassava starch cross-linked with di- or polyfunctional carboxylic acids: Synthesis, water absorbent behavior and rheological characterizations. Eur. Polym. J. 2009, 45, 3399–3408. [Google Scholar] [CrossRef]
- Wilpiszewska, K.; Antosik A., K.; Spychaj, T. Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohydr. Polym. 2015, 128, 85–89. [Google Scholar] [CrossRef]
- Wilpiszewska, K. Hydrophilic films based on starch and carboxymethyl starch. Pol. J. Chem. Technol. 2019, 21, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Ogata, A.; Yang, W.H.; Hattori, M. Increased hydrophobicity of carboxymethyl starch film by conjugation with zein. Biosci. Biotechnol. Biochem. 2002, 66, 1276–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngamekaue, N.; Chitprasert, P. Effects of beeswax-carboxymethyl cellulose composite coating on shelf-life stability and intestinal delivery of holy basil essential oil-loaded gelatin microcapsules. Int. J. Biol. Macromol. 2019, 135, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Salama, H.E.; Aziz, M.S.A.; Alsehli, M. Carboxymethyl cellulose/sodium alginate/chitosan biguanidine hydrochloride ternary system for edible coatings. Int. J. Biol. Macromol. 2019, 139, 614–620. [Google Scholar] [CrossRef]
- Putri, D.A.; Setiawan, A.; Anggraini, P.D. Physical properties of edible sorghum starch film added with carboxymethyl cellulose. J. Phys. Sci. 2018, 29, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Mali, K.K.; Dhawale, S.C.; Dias, R.J.; Dhane, N.S.; Ghorpade, V.S. Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Ind. J. Pharm. Sci. 2018, 80, 657–667. [Google Scholar] [CrossRef]
- Wahyuningtyas, D.; Dinata, A. Combination of carboxymethyl cellulose (CMC)—Corn starch edible film and glycerol plasticizer as a delivery system of diclofenac. AIP Conf. Proc. 2018, 1977, 030032. [Google Scholar]
- Almasi, H.; Ghanbarzadeh, B.; Entezami, A.A. Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 2010, 46, 1–5. [Google Scholar] [CrossRef]
- Suriyatem, R.; Auras, R.A.; Rachtanapun, R. Utilization of carboxymethyl cellulose from durian rind agricultural waste to improve physical properties and stability of rice starch-based film. J. Polym. Environ. 2019, 27, 286–298. [Google Scholar] [CrossRef]
- Tavares, K.M.; de Campos, A.; Mitsuyuki, M.C.; Luchesi, B.R.; Marconcini, J.M. Corn and cassava starch with carboxymethyl cellulose films and its mechanical hydrophobic properties. Carbohydr. Polym. 2019, 223, 115055. [Google Scholar] [CrossRef]
- Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Cent. J. 2011, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Veronese, A.F.; de Souza Rocha, T.; Franco, C.M.L.; Costa, M.S.; Grossmann, M.V.E. Starch-carboxymethyl cellulose (CMC) mixtures processed by extrusion. Starch 2018, 70, 1700336. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Q.; Shi, Z.; Ye, J. Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Res. Int. 2017, 100, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Putri, D.A.; Setiawan, A.; Anggraini, P.D. Effect of carboxymethyl cellulose (CMC) as biopolymers to edible film sorghum starch hydrophobicity characteristics. AIP Conf. Proc. 2017, 1818, 020044. [Google Scholar]
- Antosik, A.K.; Piątek, A.; Wilpiszewska, K. Carboxymethylated starch and cellulose derivatives-based film as human skin equivalent for adhesive properties testing. Carbohydr. Polym. 2019, 222, 115014. [Google Scholar] [CrossRef] [PubMed]
- Antosik, A.K.; Wilpiszewska, K.; Czech, Z. Carboxymethylated polysaccharide-based films as carriers for acrylic pressure-sensitive adhesives. Int. J. Adhes. Adhes. 2017, 73, 75–79. [Google Scholar] [CrossRef]
- Kessel, H. Determination of the functional group and the degree of substitution of carboxymethyl starch. Starch 1985, 37, 334–336. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Chivrac, F.; Pollet, E.; Schmutz, M.; Avérous, L. New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromol 2008, 9, 896–900. [Google Scholar] [CrossRef]
- Pushpadass, H.A.; Marx, D.B.; Hanna, M.A. Effects of extrusion temperature and plasticizers on the physical and functional properties of starch. Starch 2008, 60, 527–538. [Google Scholar] [CrossRef]
- Rachtanapun, P. Blended films of carboxymethyl cellulose from papaya peel (CMCp) and corn starch. Kasetsart J. (Nat. Sci.) 2009, 43, 259–266. [Google Scholar]
- Olsson, E.; Menzel, M.; Johansson, C.; Andersson, R.; Koch, K.; Järnström, L. The effect of pH on hydrolysis, cross-linking, and barrier properties of starch barriers containing citric acid. Carbohydr. Polym. 2013, 98, 1505–1513. [Google Scholar] [CrossRef]
- Kapelko-Żeberska, M.; Buksa, K.; Szumny, A.; Zięba, T.; Gryszkin, A. Analysis of molecular structure of starch citrate obtained by a well-stablished method. LWT Food Sci. Technol. 2016, 69, 334–341. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emer. Technol. 2010, 11, 697–702. [Google Scholar] [CrossRef]
- Su, J.F.; Huang, Z.; Yuan, X.Y.; Wang, X.Y.; Li, M. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr. Polym. 2010, 79, 145–153. [Google Scholar] [CrossRef]
- Li, M.C.; Mei, C.; Xu, X.; Lee, S.; Wu, Q. Cationic Surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 2016, 107, 200–210. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilpiszewska, K.; Antosik, A.K.; Schmidt, B.; Janik, J.; Rokicka, J. Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose. Polymers 2020, 12, 2447. https://doi.org/10.3390/polym12112447
Wilpiszewska K, Antosik AK, Schmidt B, Janik J, Rokicka J. Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose. Polymers. 2020; 12(11):2447. https://doi.org/10.3390/polym12112447
Chicago/Turabian StyleWilpiszewska, Katarzyna, Adrian Krzysztof Antosik, Beata Schmidt, Jolanta Janik, and Joanna Rokicka. 2020. "Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose" Polymers 12, no. 11: 2447. https://doi.org/10.3390/polym12112447
APA StyleWilpiszewska, K., Antosik, A. K., Schmidt, B., Janik, J., & Rokicka, J. (2020). Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose. Polymers, 12(11), 2447. https://doi.org/10.3390/polym12112447