Development and Characterization of Clay–Nanocomposites for Water Purification
<p>Annotated diagram for the synthesis of clay-nanocomposites.</p> "> Figure 2
<p>X-ray diffraction (XRD) spectrum of CuO/Ag correlated with the reference data of CuO monoclinic phase, adapted from Ref. [<a href="#B20-materials-13-03793" class="html-bibr">20</a>] and the face-centered cubic (FCC) phase of Ag, adapted from reference [<a href="#B23-materials-13-03793" class="html-bibr">23</a>].</p> "> Figure 3
<p>XRD pattern of ZnO/Ag nanocomposite with correlation with the wurtzite phase of ZnO adapted from Ref. [<a href="#B23-materials-13-03793" class="html-bibr">23</a>] and the face-centered cubic (FCC) phase of Ag, adapted from reference [<a href="#B20-materials-13-03793" class="html-bibr">20</a>].</p> "> Figure 4
<p>(<b>A</b>) Transmission electron microscope (TEM) micrograph of CuO/Ag and (<b>B</b>) particle size distribution of CuO/Ag nanocomposite, adapted from reference [<a href="#B19-materials-13-03793" class="html-bibr">19</a>].</p> "> Figure 5
<p>(<b>A</b>) TEM micrograph of ZnO/Ag (<b>B</b>) Particle size distribution of ZnO/Ag nanocomposite adapted from reference [<a href="#B19-materials-13-03793" class="html-bibr">19</a>].</p> "> Figure 6
<p>(<b>A</b>) Ultraviolet–visible (UV–Vis) spectrophotometric absorption spectra of CuO/Ag and (<b>B</b>) Tauc plot of CuO/Ag, adapted from reference [<a href="#B19-materials-13-03793" class="html-bibr">19</a>].</p> "> Figure 7
<p>UV–Vis spectra of ZnO/Ag nanocomposite with its equivalent plot showing its energy band gap, adapted from reference [<a href="#B19-materials-13-03793" class="html-bibr">19</a>]. (<b>A</b>)-Ultraviolet–visible (UV–Vis) spectrophotometric absorption spectra of ZnO/Ag and (<b>B</b>)-Tauc plot of ZnO/Ag.</p> "> Figure 8
<p>Synthesised clay–nanocomposite pellets of (<b>A</b>) CuO/Ag nanocomposite (<b>B</b>) ZnO/Ag nanocomposite.</p> "> Figure 9
<p>XRD spectra pattern of clay mineral, CuO/Ag, clay/CuO/Ag. Clay/CuO/Ag-1, clay/CuO/Ag-2, clay/CuO/Ag-3 contain 2.5%, 5% and 10% of CuO/Ag, respectively.</p> "> Figure 10
<p>XRD spectra pattern of clay mineral, ZnO/Ag, clay/ZnO/Ag. Clay/ZnO/Ag-1, clay/ZnO/Ag-2, clay/ZnO/Ag-3 have 2.5%, 5% and 10% of ZnO/Ag, respectively.</p> "> Figure 11
<p>Scanning electron microscope (SEM) micrograph of clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3.</p> "> Figure 12
<p>SEM micrograph of clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3.</p> "> Figure 13
<p>(<b>A</b>) UV–Vis spectrophotometric absorption spectra of clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 and (<b>B</b>) their corresponding band gap plots.</p> "> Figure 14
<p>(<b>A</b>) UV–Vis spectrophotometric absorption spectra of clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 and (<b>B</b>) their respective band gap plots.</p> "> Figure 15
<p>Adsorption-desorption isotherms of nitrogen gas at 77 K of “as-received” pellets of clay/CuO/Ag samples.</p> "> Figure 16
<p>Pore size distribution of clay/CuO/Ag samples.</p> "> Figure 17
<p>Adsorption-desorption isotherms of nitrogen gas at 77 K of “as-received” pellets of clay/ZnO/Ag samples.</p> "> Figure 18
<p>Pore size distribution of clay/CuO/Ag samples.</p> "> Figure 19
<p>Antibacterial activity of clay/CuO/Ag and clay/ZnO/Ag against <span class="html-italic">E. coli.</span> C1-EC, C2-EC, C3-EC correspondingly relates to clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 against <span class="html-italic">E. coli.</span> Z1-EC, Z2-EC, Z3-EC correspondingly relates to clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 against <span class="html-italic">E. coli.</span></p> "> Figure 20
<p>Antibacteria activity of clay/CuO/Ag and clay/ZnO/Ag against <span class="html-italic">S. aureus</span>. C1-EC, C2-EC, C3-EC correspondingly relates to clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 against <span class="html-italic">S. aureus</span>. Z1-EC, Z2-EC, Z3-EC correspondingly relates to clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 against <span class="html-italic">S. aureus</span>.</p> "> Figure 21
<p>Histogram of the antibacteria activity of clay–nanocomposites pellets against <span class="html-italic">E. coli</span> and <span class="html-italic">S. aureus</span> in broth media after 24 h of incubation. C1, C2, C3, Z1, Z2 and Z3 respectively relates to: clay/CuO/Ag-1, clay/CuO/Ag-2, clay/CuO/Ag-3, clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 (Z1, Z2 and Z3 are empty because there was no any recorded inhibition of the bacterial species in the broth media).</p> "> Figure 22
<p>Antibacteria activity of clay/CuO/Ag and clay/ZnO/Ag against E. coli. C1-EC, C2-EC, C3-EC correspondingly relates to clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 against E. coli. Z1-EC, Z2-EC, Z3-EC correspondingly relates to clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 against <span class="html-italic">E. coli</span>.</p> "> Figure 23
<p>Antibacteria activity of clay/CuO/Ag and clay/ZnO/Ag against <span class="html-italic">S. aureus</span> in water after 24 h of incubation. C1-EC, C2-EC, C3-EC correspondingly relates to clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 against <span class="html-italic">S. aureus</span>. Z1-EC, Z2-EC, Z3-EC correspondingly relates to clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 against <span class="html-italic">S. aureus</span>.</p> "> Figure 24
<p>Histogram of the antibacteria activity of clay–nanocomposites pellets against <span class="html-italic">E. coli</span> and <span class="html-italic">S. aureus</span> in sterile aqueous media after 24 h of incubation. C1, C2, C3, Z1, Z2 and Z3 respectively relates to: clay/CuO/Ag-1, clay/CuO/Ag-2, clay/CuO/Ag-3, clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3. (Z1 and Z2 are empty because there was no any recorded inhibition of the bacterial species in the aqueous media).</p> "> Figure 25
<p>Antibacteria activity of clay/CuO/Ag and clay/ZnO/Ag against <span class="html-italic">E. coli</span> in water after 48 h of incubation. C1-EC, C2-EC, C3-EC correspondingly relates to clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 E. coli. Z1-EC, Z2-EC, Z3-EC correspondingly relates to clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 against <span class="html-italic">E. coli</span>.</p> "> Figure 26
<p>Antibacteria activity of clay/CuO/Ag and clay/ZnO/Ag against <span class="html-italic">S. aureus</span> in water after 48 h of incubation. C1-EC, C2-EC, C3-EC correspondingly relates to clay/CuO/Ag-1, clay/CuO/Ag-2 and clay/CuO/Ag-3 against <span class="html-italic">S. aureus</span>. Z1-EC, Z2-EC, Z3-EC correspondingly relates to clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3 against <span class="html-italic">S. aureus</span>.</p> "> Figure 27
<p>Histogram of the antibacteria activity of clay–nanocomposites pellets against <span class="html-italic">E. coli</span> and <span class="html-italic">S. aureus</span> in sterile aqueous media after 48 h of incubation. C1, C2, C3, Z1, Z2 and Z3, respectively relates to: clay/CuO/Ag-1, clay/CuO/Ag-2, clay/CuO/Ag-3, clay/ZnO/Ag-1, clay/ZnO/Ag-2 and clay/ZnO/Ag-3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanocomposites
2.2. Synthesis of Clay–Nanocomposite
2.3. Colony-Forming Units
2.3.1. Bacteria in a Nutrient Broth Media
2.3.2. Bacteria in a Sterile Water Medium
3. Results and Discussion
3.1. Characterization of Metal Oxide/Silver Nanocomposite
3.1.1. X-ray Diffraction (XRD) Analysis of Metal Oxide/Silver Nanocomposite
3.1.2. X-ray Fluorescence (XRF) Analysis of Metal Oxide/Silver Nanocomposite
3.1.3. Transmission Electron Microscope (TEM) Analysis of Metal Oxide/Silver Nanocomposites
3.1.4. Ultraviolet–Visible (UV–Vis) Spectroscopy Analysis of Metal Oxide/Silver Nanocomposites
3.2. Clay–Nanocomposite Pellets
3.2.1. XRD Analysis of Clay–Nanocomposites
3.2.2. X-ray Fluorescence (XRF) Analysis of Clay–Nanocomposites
3.2.3. Scanning Electron Microscope (SEM) Analysis of Clay–Nanocomposites
3.2.4. UV–Vis Spectrophotometer of Clay–Nanocomposites
3.2.5. Brunauer–Emmett–Teller (BET) Analysis of Clay-Nanocomposite Pellets
4. Antibacterial Activity of Clay–Nanocomposites
4.1. Antibacterial Activity of Clay–Nanocomposite Pellets on Bacteria in Broth Media
4.2. Antibacteria Activity of Clay–Nanocomposite Pellets after Incubation in Water
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Annan, E.; Agyei-Tuffour, B.; Bensah, Y.D.; Konadu, D.S.; Yaya, A.; Onwona-Agyeman, B.; Nyankson, E. Application of clay ceramics and nanotechnology in water treatment: A review. Cogent Eng. 2018, 5, 1–35. [Google Scholar] [CrossRef]
- Cleary, S.A. Sustainable Drinking Water Treatment for Small Communities Using Multistage Slow Sand Filtration. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2005. [Google Scholar]
- Ilisz, I.; Dombi, A.; Mogyorósi, K.; Dékány, I. Photocatalytic water treatment with different TiO2 nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents. Colloids Surf. A Physicochem. Eng. Asp. 2003, 230, 89–97. [Google Scholar] [CrossRef]
- Apalangya, V.; Rangari, V.; Jeelani, S.; Dankyi, E.; Yaya, A.; Darko, S. Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles. Ceram. Int. 2018, 44, 7165–7171. [Google Scholar] [CrossRef]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci-Nanosci. 2011, 16, 7237–7248. [Google Scholar] [CrossRef]
- Kittler, S.; Greulich, C.; Diendorf, J.; Köller, M.; Epple, M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010, 22, 4548–4554. [Google Scholar] [CrossRef]
- Ly, Q.V.; Hu, Y.; Li, J.; Cho, J.; Hur, J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. Environ. Int. 2019, 129, 164–184. [Google Scholar] [CrossRef]
- Weinberg, H.; Galyean, A.; Leopold, M. Evaluating engineered nanoparticles in natural waters. Trends Analyt. Chem. 2011, 30, 72–83. [Google Scholar] [CrossRef]
- Ying, Y.; Ying, W.; Li, Q.; Meng, D.; Ren, G.; Yan, R.; Peng, X. Recent advances of nanomaterial-based membrane for water purification. App. Mater. Today 2017, 7, 144–158. [Google Scholar] [CrossRef]
- Yuan, H.; He, Z. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review. Bioresour. Technol. 2015, 195, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Ewerts, H.; Swanepoel, A.; du Preez, H.H. Efficacy of conventional drinking water treatment processes in removing problem-causing phytoplankton and associated organic compounds. Water SA 2013, 39, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Asamoah, R.B.; Nyankson, E.; Annan, E.; Efavi, J.K.; Kan-Dapaah, K.; Apalangya, V.A.; Damoah, L.N.W.; Dodoo-Arhin, D.; Tiburu, E.K.; Kwofie, S.K.; et al. Industrial Applications of Clay Materials from Ghana-A Review. Orient. J. Chem. 2018, 34, 1719–1734. [Google Scholar] [CrossRef] [Green Version]
- Geise, G.M.; Lee, H.-S.; Miller, D.J.; Freeman, B.D.; Mcgrath, J.E.; Paul, D.R. Water Purification by Membranes: The Role of Polymer Science. J. Polym. Sci. B. Polym. Phy. 2010, 48, 1685–1718. [Google Scholar] [CrossRef]
- Nandi, B.K.; Uppaluri, R.; Purkait, M.K. Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci. 2008, 42, 102–110. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Roberson, M.; Rangari, V.; Jeelani, S.; Samuel, T.; Yates, C. Synthesis and Characterization Silver, Zinc Oxide and Hybrid Silver/Zinc Oxide Nanoparticles for Antimicrobial Applications. Nano Life 2014, 4. [Google Scholar] [CrossRef]
- Zhu, H.; Pielichowski, K.; Njuguna, J. Health and Environmental Safety of Nanomaterials: Polymer Nanocomposites and other Materials Containing Nanoparticles; Elsevier Science and Technology: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Duffy, L.L.; Osmond-McLeod, M.J.; Judy, J.; King, T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry relevant isolates of Salmonella and Campylobacter. Food Control 2018, 92, 293–300. [Google Scholar] [CrossRef]
- Asamoah, R.B.; Mensah, B.; Annan, E.; Nbelayim, P.; Apalangya, V.; Yaya, A. Comparative Study of Antibacterial Activity of CuO/Ag and ZnO/Ag Nanocomposites. Advances in Materials Science and Engineering. Adv. Mater. Sci. Eng. 2020, 2020, 7814324. [Google Scholar] [CrossRef]
- Asamoah, R.B.; Yaya, A.; Mensah, B.; Nbalayim, P.; Apalangya, V.; Bensah, Y.D.; Damoah, L.N.W.; Agyei-Tuffour, B.; Dodoo-Arhin, D.; Annan, E. Synthesis and characterization of zinc and copper oxide nanoparticles and their antibacteria activity. Results Mater 2020, 7, 100099. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [Green Version]
- Korah, L.V.; Nigay, P.M.; Cutard, T.; Nzihou, A.; Thomas, S. The impact of the particle shape of organic additives on the anisotropy of a clay ceramic and its thermal and mechanical properties. Constr. Build. Mater. 2016, 125, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Darezereshki, E.; Alizadeh, M.; Bakhtiari, F.; Schaffie, M.; Ranjbar, M. A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Apl. Clay Sci. 2011, 54, 107–111. [Google Scholar] [CrossRef]
- Jang, E.-S. Recent progress in synthesis of plate-like ZnO and its applications: A review. J. Korean Ceram. Soc. 2017, 54, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Packiyaraj, M.S.; Nigam, H.; Agarwal, G.S.; Singh, B.; Patra, M.K. Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores. J. Nanotechnol. 2014, 5, 789–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012. [Google Scholar] [CrossRef] [Green Version]
- Azzouz, A.; Nistor, D.; Miron, D.; Ursu, A.V.; Sajin, T.; Monette, F.; Niquette, P.; Hausler, R. Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2–TPD measurements. Thermochim. Acta 2006, 449, 27–34. [Google Scholar] [CrossRef]
- Walton, K.S.; Frost, H.; Snurr, R.Q. Applicability of the B.E.T method for obtaining surface areas in metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 8552–8556. [Google Scholar] [CrossRef]
- Elkady, M.F.; Shorky, H.H.; Hafez, E.E.; Fouad, A. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria. Bioinorg. Chem. Appl. 2015, 2015, 536854. [Google Scholar] [CrossRef] [Green Version]
- Porcheron, G.; Garénaux, A.; Proulx, J.; Sabri, M.; Dozois, C.M. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: Correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence Front. Cell Infect. Microbiol. 2013, 90, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Barnali, A. A Detail Investigation to Observe the Effect of Zinc Oxide and Silver Nanoparticles in Biological System. Master’s Thesis, National Institute of Technology, Orissa, India, January 2011. [Google Scholar]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Sheikhaghaiy, T.; Eimani, B.G. Investigation of synergistic effect of cuo nanoparticles and nisin on genome of Escherichia coli bacteria. J. Water Environ. Nanotechol. 2018, 3, 355–367. [Google Scholar] [CrossRef]
Clay Nanocomposite (Clay Pellet) | Clay Mineral | Nanocomposite (CuO/Ag or ZnO/Ag) | Starch |
---|---|---|---|
Weight (g) | Weight (g) | Weight (g) | |
A | 20 | 0.7 | 2.8 |
B | 20 | 1.4 | 2.8 |
C | 20 | 2.9 | 2.8 |
Component. | CuO/Ag | ZnO/Ag |
---|---|---|
Al2O3 | 0.0849 | 0.105 |
SiO2 | 0.147 | 0.257 |
P2O5 | 0.0146 | 0.0203 |
K2O | 0.0429 | 0.0473 |
CaO | 0.0214 | 0.0216 |
CuO | 99.2 | |
ZnO | 98.8 | |
Ag2O | 0.518 | 0.547 |
Component | Clay/CuO/Ag-1 | Clay/CuO/Ag-2 | Clay/CuO/Ag-3 |
---|---|---|---|
MgO | 0.733 | 0.699 | 0.667 |
Al2O3 | 19.9 | 19.5 | 18.2 |
SiO2 | 65.4 | 64.2 | 62.4 |
P2O5 | 0.234 | 0.229 | 0.217 |
Cl | 0.0093 | 0.0102 | 0.0107 |
K2O | 0.988 | 0.939 | 0.918 |
CaO | 0.438 | 0.424 | 0.437 |
TiO2 | 0.957 | 0.93 | 0.894 |
MnO | 0.0524 | 0.0505 | 0.0509 |
Fe2O3 | 6.4 | 5.99 | 5.76 |
CuO | 3.46 | 5.25 | 8.97 |
Ag2O | 0.0102 | 0.0114 | 0.0185 |
Na2O | 1.45 | 1.72 | 1.53 |
Component | Clay/ZnO/Ag-1 | Clay/ZnO/Ag-1 | Clay/ZnO/Ag-1 |
---|---|---|---|
MgO | 0.732 | 0.624 | 0.653 |
Al2O3 | 18.9 | 18.2 | 16.4 |
SiO2 | 62.2 | 62.9 | 51.8 |
P2O5 | 0.216 | 0.217 | 0.179 |
K2O | 0.978 | 0.919 | 0.797 |
CaO | 0.398 | 0.402 | 0.316 |
TiO2 | 0.915 | 0.886 | 0.786 |
MnO | 0.0658 | 0.0638 | 0.0596 |
Fe2O3 | 6.49 | 6.26 | 5.79 |
ZnO | 4.66 | 5.15 | 12.7 |
Ag2O | 0.0148 | 0.0198 | 0.061 |
Na2O | 4.42 | 4.33 | 10.3 |
Clay–Nanocomposite Pellet | Surface Area (SBET) | Pore Volume (Vm) | Peak Pore Size (dp) |
---|---|---|---|
(m2/g) | (cm3/g) | (nm) | |
Clay/CuO/Ag | |||
Clay/CuO/Ag-1 | 2.09 | 0.4807 | 76.49 |
Clay/CuO/Ag-2 | 3.05 | 0.7 | 90.22 |
Clay/CuO/Ag-3 | 4.25 | 0.9773 | 103.54 |
Clay/ZnO/Ag | |||
Clay/ZnO/Ag-1 | 5.08 | 1.1667 | 76.49 |
Clay/ZnO/Ag-2 | 6.39 | 1.4678 | 103.54 |
Clay/ZnO/Ag-3 | 6.46 | 1.4845 | 185.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asamoah, R.B.; Yaya, A.; Nbelayim, P.; Annan, E.; Onwona-Agyeman, B. Development and Characterization of Clay–Nanocomposites for Water Purification. Materials 2020, 13, 3793. https://doi.org/10.3390/ma13173793
Asamoah RB, Yaya A, Nbelayim P, Annan E, Onwona-Agyeman B. Development and Characterization of Clay–Nanocomposites for Water Purification. Materials. 2020; 13(17):3793. https://doi.org/10.3390/ma13173793
Chicago/Turabian StyleAsamoah, Richard Barnes, Abu Yaya, Paschal Nbelayim, Ebenezer Annan, and Boateng Onwona-Agyeman. 2020. "Development and Characterization of Clay–Nanocomposites for Water Purification" Materials 13, no. 17: 3793. https://doi.org/10.3390/ma13173793
APA StyleAsamoah, R. B., Yaya, A., Nbelayim, P., Annan, E., & Onwona-Agyeman, B. (2020). Development and Characterization of Clay–Nanocomposites for Water Purification. Materials, 13(17), 3793. https://doi.org/10.3390/ma13173793