Spectral Characteristics of Common Reed Beds: Studies on Spatial and Temporal Variability
"> Figure 1
<p>Overview of the study sites Olkiluoto (<b>left</b>) and Hilskansaari (<b>right</b>).</p> "> Figure 2
<p>Old reed bed of target 2 (<b>a</b>) and new reed bed of target 3 (<b>b</b>). The photographs are taken on 12 June 2012.</p> "> Figure 3
<p>The measured spectra of targets 1, 2 and 3 during the growth period. The measurement dates are shown in the legend. (<b>a</b>) Target 1; (<b>b</b>) Target 2; (<b>c</b>) Target 3.</p> "> Figure 4
<p>The reference spectrum of haircap moss and the spectra of targets 1–3 measured on 18 July 2012.</p> "> Figure 5
<p>Mean and standard deviation of the reflectance spectra of meadow (blue) and reed bed (red) classes. The standard deviation is presented using dashed lines.</p> "> Figure 6
<p>Continuum removed spectra of reed bed and meadow classes.</p> "> Figure 7
<p>The reed bed reflectance spectra at the four test sites in Olkiluoto Island.</p> "> Figure 8
<p>Samples of measured reed components: (<b>a</b>) live leafs; (<b>b</b>) live inflorescence; (<b>c</b>) dead stems; and (<b>d</b>) dead inflorescence.</p> "> Figure 9
<p>The partial spectra of reed bed.</p> "> Figure 10
<p>The classification results using the mean spectrum of Kornamaa.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Spectral Field Measurements
2.3. Description of Study Sites
2.4. Airborne Hyperspectral Data
2.5. Methods
3. Results
3.1. Temporal Variability of Reed Bed Spectrum
3.2. Discrimination of Reed Beds from Reference Spectrum at Different Phases of the Phenological Cycle
3.3. Local Spatial Variability of Reed Bed Spectra and Separation from Meadow
3.4. Spatial Variability of Reed Bed Spectra in Olkiluoto Island
3.5. Partial Spectra of Reed Beds
3.6. Reed Bed Discrimination Using Airborne Hyperspectral Data
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Altartouri, A.; Nurminen, L.; Jolma, A. Modeling the role of the close-range effect and environmental variables in the occurrence and spread of Phragmites australis in four sites on the Finnish coast of the Gulf of Finland and the Archipelago Sea. Ecol. Evol. 2014, 4, 987–1005. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.; Idler, C. Treatment of domestic and agricultural wastewater by reed bed systems. Ecol. Eng. 1999, 12, 13–25. [Google Scholar] [CrossRef]
- Köbbing, J.F.; Thevs, N.; Zerbe, S. The utilisation of reed (Phragmites australis): A review. Mires Peat 2013, 13, 1–14. [Google Scholar]
- Hansson, P.A.; Fredriksson, H. Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agric. Ecosyst. Environ. 2004, 102, 365–375. [Google Scholar] [CrossRef]
- Fyfe, S.K. Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct? Limnol. Oceanogr. 2003, 48, 464–479. [Google Scholar] [CrossRef]
- Cho, M.A.; Debba, P.; Mathieu, R.; Naidoo, L.; Van Aardt, J.; Asner, G.P. Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4133–4142. [Google Scholar] [CrossRef]
- Price, J.C. How unique are spectral signatures? Remote Sens. Environ. 1994, 49, 181–186. [Google Scholar] [CrossRef]
- Clark, M.; Roberts, D.; Clark, D. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Schmidt, K.S.; Skidmore, A.K. Spectral discrimination of vegetation types in a coastal wetland. Remote Sens. Environ. 2003, 85, 92–108. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Optimal hyperspectral narrowbands for discriminating agricultural crops. Int. J. Remote Sens. 2001, 20, 257–291. [Google Scholar] [CrossRef]
- Vahtmäe, E.; Kutser, T.; Martin, G.; Kotta, J. Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—A Baltic Sea case study. Remote Sens. Environ. 2006, 101, 342–351. [Google Scholar] [CrossRef]
- Ramsey, E.; Rangoonwala, A. Hyperspectral remote sensing of wetland vegetation. In Hyperspectral Remote Sensing of Vegetation; Taylor & Francis: Abingdon, UK, 2011; pp. 487–511. [Google Scholar]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Pengra, B.W.; Johnston, C.A.; Loveland, T.R. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sens. Environ. 2007, 108, 74–81. [Google Scholar] [CrossRef]
- Lopez, R.; Edmonds, C.; Neale, A.; Slonecker, T.; Jones, B.; Heggem, T.; Lyon, J.; Jaworski, E.; Garofalo, D.; Williams, D. Accuracy assesments of airborne hyperspectral data for mapping opportunistic plant species in freshwater coastal wetlands. In Remote Sensing and GIS Accuracy Assessment; Taylor & Francis: Abingdon, UK, 2007; pp. 318–339. [Google Scholar]
- Onojeghuo, A.O.; Blackburn, G.A. Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats. Remote Sens. Environ. 2011, 115, 2025–2034. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Zlinszky, A.; Tóth, V.R. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sens. Environ. 2015, 157, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Ouyang, Z.T.; Gao, Y.; Xie, X.; Guo, H.Q.; Zhang, T.T.; Zhao, B. Spectral discrimination of the invasive plant spartina alterniflora at multiple phenological stages in a Saltmarsh Wetland. PLoS ONE 2013, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Artigas, F.J.; Yang, J.S. Hyperspectral remote sensing of marsh species and plant vigour gradient in the New Jersey Meadowlands. Int. J. Remote Sens. 2005, 26, 5209–5220. [Google Scholar] [CrossRef]
- Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinformation 2006, 8, 3–17. [Google Scholar] [CrossRef]
- Haapanen, R.; Lahdenperä, A.M. The Inventory of the Terrestrial Part of Land-To-Sea Transects on Olkiluoto Island in 2008 and the Investigations of Reedbeds Surrounding Olkiluoto Island Carried out in 2007–2008; Posiva Ltd.: Eurajoki, Finland, 2011. [Google Scholar]
- Kangasniemi, V.; Helin, J. Studies on the Aquatic Environment at Olkiluoto and Reference Area: 1. Olkiluoto, Reference Lakes and Eurajoki and Lapijoki Rivers in 2009–2010; Posiva Ltd.: Eurajoki, Finland, 2014. [Google Scholar]
- Pohjola, J.; Turunen, J.; Lipping, T.; Ikonen, A.T.K. Computers and geosciences landscape development modeling based on statistical framework. Comput. Geosci. 2014, 62, 43–52. [Google Scholar] [CrossRef]
- Lambertini, C.; Gustafsson, M.H.G.; Frydenberg, J.; Speranza, M.; Brix, H. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquat. Bot. 2008, 88, 160–170. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Wilson, E.H.; Barrett, N.; Civco, D.L.; Prisloe, S.; Hurd, J.D.; Chadwick, C. Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens. Environ. 2008, 112, 4048–4060. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image proccessing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Swain, P.H.; Davis, S. Remote Sensing: The Quantatitative Approach; McGraw Hill Book Company: New York, NY, USA, 1978. [Google Scholar]
- Kokaly, R.F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ. 2001, 75, 153–161. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification, and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Debba, P.; Cho, M.A.; Mathieu, R. Within- and between-class variability of spectrally similar tree species. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, pp. 272–275.
- Onojeghuo, A.O.; Blackburn, G.A. Mapping reedbed habitats using texture-based classification of QuickBird imagery. Int. J. Remote Sens. 2011, 32, 8123–8138. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Ustin, S.L. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. J. Environ. Manag. 2009, 90, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
Date | Location | Target | Section | Sensor | T(°c) | Relative Humidity | Water Heigth | Stage |
---|---|---|---|---|---|---|---|---|
12 June 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 18 | 60% | 10 | Vegetative growth |
21 June 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 14 | 48% | 12 | Vegetative growth |
29 June2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 19 | 40% | 17 | Vegetative growth |
9 July 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 18 | 94% | 8 | Vegetative growth |
18 July 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 19 | 49% | 29 | Vegetative growth |
20 July 2012 | Olkiluoto | Haircap Moss | 3.2 | GER1500 | 19 | 56% | 31 | |
20 July 2012 | Olkiluoto Pier | 4 Meadows | 3.3 | GER1500 | 19 | 56% | 31 | |
27 July 2012 | Olkiluoto, Pier | 3 partial spectra | 3.5 | GER1500 | 18 | 88% | 21 | Vegetative growth |
27 July 2012 | Olkiluoto, Pier | Reed bed (n = 7) | 3.3 | GER1500 | 18 | 88% | 21 | Vegetative growth |
10 August 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 16 | 48% | 20 | Flowering |
14 August 2012 | Kornamaa | partial spectra | 3.5 | GER1500 | 21 | 50% | 8 | Flowering |
14 August 2012 | Kornamaa, Munakari | Reed beds (n = 3) | 3.4 | GER1500 | 21 | 50% | 8 | Flowering |
15 August 2012 | Flutanperä, Satama | Reed beds (n = 3) | 3.4, 3.5 | GER1500 | 23 | 53% | 6 | Flowering |
5 September 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 16 | 59% | 34 | Flowering |
25 September 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 9 | 66% | 31 | Withering |
3 October 2012 | Hilskansaari | 1,2 and 3 | 3.1, 3.2 | GER1500 | 13 | 49% | 37 | Dormancy |
17 August 2010 | Rauma, Otanlahti | Grass field (n = 7) | 3.3 | FieldSpec | 20 | 53% |
Density Live | Height Live | Density Dead | Height Dead | |
---|---|---|---|---|
Flutanperä | 65.33 | 201.3 | 10.67 | 72.22 |
Munakari | 32.00 | 240.4 | 12.00 | 136.2 |
Kornamaa | 53.33 | 186.3 | 4.000 | 97.00 |
Satama | 56.00 | 197.3 | 33.33 | 146.6 |
ED | 12.06 | 21.06 | 29.06 | 09.07 | 18.07 | 10.08 | 05.09 | 25.09 | 03.10 |
---|---|---|---|---|---|---|---|---|---|
target1/moss | 177.1 | 171.9 | 152.1 | 124.6 | 104.9 | 156.4 | 64.2 | 57.1 | 202.1 |
target2/moss | 167.3 | 155.6 | 141.6 | 118.1 | 87.1 | 104.8 | 54.3 | 79.8 | 108.7 |
target3/moss | 156.6 | 199.8 | 227.6 | 244.8 | 254.2 | 284.6 | 322.1 | 177.7 | 185.2 |
Radians | 12.06 | 21.06 | 29.06 | 09.07 | 18.07 | 10.08 | 05.09 | 25.09 | 03.10 |
---|---|---|---|---|---|---|---|---|---|
target1/moss | 0.1824 | 0.1825 | 0.1282 | 0.096 | 0.0935 | 0.0791 | 0.0901 | 0.1500 | 0.2007 |
target2/moss | 0.1733 | 0.1737 | 0.1219 | 0.0991 | 0.1038 | 0.0777 | 0.1195 | 0.2000 | 0.2157 |
target3/moss | 0.1546 | 0.1408 | 0.1355 | 0.1337 | 0.1330 | 0.0941 | 0.0839 | 0.1062 | 0.0732 |
JM-Dist. | 12.06 | 21.06 | 29.06 | 09.07 | 18.07 | 10.08 | 05.09 | 25.09 | 03.10 |
---|---|---|---|---|---|---|---|---|---|
target1 | 0.394 | 0.371 | 0.268 | 0.157 | 0.096 | 0.099 | 0.041 | 0.027 | 0.513 |
target2 | 0.350 | 0.302 | 0.226 | 0.139 | 0.053 | 0.048 | 0.029 | 0.066 | 0.139 |
target3 | 0.089 | 0.142 | 0.176 | 0.197 | 0.209 | 0.247 | 0.293 | 0.122 | 0.132 |
Measure/Reed Bed Type | Old | New |
---|---|---|
Euclidean distance | 12.06 | 05.09 |
Spectral angle mapper | 03.10 | 12.06 |
JM-distance | 12.06 | 05.09 |
ED | R1 | R2 | R4 | R5 | R6 | R7 | R8 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|---|---|---|---|---|---|
Reed | 242.4 | 15.0 | 116.6 | 75.0 | 108.0 | 144.9 | 108.0 | 131.0 | 119.7 | 243.7 | 136.9 |
Meadows | 216.9 | 67.7 | 111.7 | 117.3 | 109.3 | 137.7 | 99.7 | 125.7 | 71.6 | 225.8 | 153.6 |
R | R1 | R2 | R4 | R5 | R6 | R7 | R8 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|---|---|---|---|---|---|
Reed | 0.0692 | 0.0233 | 0.0298 | 0.0889 | 0.0086 | 0.0153 | 0.0447 | 0.1508 | 0.1343 | 0.0738 | 0.072 |
Meadows | 0.0208 | 0.0985 | 0.0843 | 0.1693 | 0.0929 | 0.0821 | 0.0778 | 0.0804 | 0.0631 | 0.0723 | 0.0500 |
α | R1 | R2 | R4 | R5 | R6 | R7 | R8 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|---|---|---|---|---|---|
Reed | 0.1082 | 0.0018 | 0.0289 | 0.0112 | 0.0243 | 0.0426 | 0.0251 | 0.0301 | 0.0384 | 0.1003 | 0.0450 |
Meadow | 0.0673 | 0.0128 | 0.0162 | 0.0315 | 0.0164 | 0.0260 | 0.0126 | 0.0276 | 0.0104 | 0.0665 | 0.0629 |
Class | Sw |
---|---|
Reed bed | 15.95 |
Meadow | 24.62 |
Savannah trees * | 5.574 |
Grass field ** | 8.857 |
Flutanperä | Munakari | Kornamaa | Satama | |
---|---|---|---|---|
Flutanperä | 17.97 | 37.58 | 114.02 | |
Munakari | 17.97 | 3.85 | 42.01 | |
Kornamaa | 37.58 | 3.85 | 22.06 | |
Satama | 114.02 | 42.01 | 22.06 |
Flutanperä | Munakari | Kornamaa | Satama | |
---|---|---|---|---|
Flutanperä | 0.0615 | 0.1328 | 0.3718 | |
Munakari | 0.0615 | 0.0160 | 0.1850 | |
Kornamaa | 0.1328 | 0.0160 | 0.1106 | |
Satama | 0.3718 | 0.01850 | 0.1106 |
Target Spectra | Agreement Accurary | Overall Accuracy |
---|---|---|
Kornamaa | 48.0% | 93.1% |
Munakari | 31.3% | 90.8% |
Flutanperä | 31.8% | 90.2% |
Satama | 30.6% | 89.2% |
Olkiluoto | 37.1% | 90.9% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuominen, J.; Lipping, T. Spectral Characteristics of Common Reed Beds: Studies on Spatial and Temporal Variability. Remote Sens. 2016, 8, 181. https://doi.org/10.3390/rs8030181
Tuominen J, Lipping T. Spectral Characteristics of Common Reed Beds: Studies on Spatial and Temporal Variability. Remote Sensing. 2016; 8(3):181. https://doi.org/10.3390/rs8030181
Chicago/Turabian StyleTuominen, Jyrki, and Tarmo Lipping. 2016. "Spectral Characteristics of Common Reed Beds: Studies on Spatial and Temporal Variability" Remote Sensing 8, no. 3: 181. https://doi.org/10.3390/rs8030181
APA StyleTuominen, J., & Lipping, T. (2016). Spectral Characteristics of Common Reed Beds: Studies on Spatial and Temporal Variability. Remote Sensing, 8(3), 181. https://doi.org/10.3390/rs8030181