Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series
"> Figure 1
<p>An example land cover map.</p> "> Figure 2
<p>Example of fully-connected neural network.</p> "> Figure 3
<p>Convolution of a time series (blue) with the positive gradient filter <math display="inline"><semantics> <mrow> <mo>[</mo> <mo>−</mo> <mn>1</mn> <mspace width="4pt"/> <mo>−</mo> <mn>1</mn> <mspace width="4pt"/> <mn>0</mn> <mspace width="4pt"/> <mn>1</mn> <mspace width="4pt"/> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> (black). The result (red) takes high positive values when the signal sharply increases, and conversely.</p> "> Figure 4
<p>Proposed temporal Convolutional Neural Network (TempCNN). The network input is a multi-variate time series. Three convolutional filters are consecutively applied, then one dense layer, and finally the Softmax layer, that provides the predicting class distribution.</p> "> Figure 5
<p>Formosat-2 image in false color (near infra-red, red, green) from 14 July 2006. Green and blue squares will be inspected visually in the experiments.</p> "> Figure 6
<p>Acquisition dates of the Formosat-2 image time series.</p> "> Figure 7
<p>Three types of normalization of four Normalized Difference Vegetation Index (NDVI) temporal profiles.</p> "> Figure 8
<p>Types of guidance. The top row represents our input in a 2D array, whereas the bottom row represents the output of one neuron under each guidance scheme.</p> "> Figure 9
<p>Overall Accuracy (OA) as function of reach for local max-pooling (MP) in blue, local max-pooling and global average pooling (MP + GAP) in orange, local average pooling (AP) in yellow, local and global average pooling (AP + GAP) in purple, and global average pooling (GAP) alone in green. We use the dataset with three spectral bands and a regular temporal sampling at two days.</p> "> Figure 10
<p>Overall Accuracy (±one standard deviation in orange) as a function of the number of parameters (<b>a</b>) or the number of successive convolutional layers (<b>b</b>) for seven temporal Convolutional Neural Network models. We use the dataset with three spectral bands and a regular temporal sampling at two days.</p> "> Figure 11
<p>Visual results for two areas. The first column displays the Formosat-2 image in false color from 14 July 2006. The second and third columns give the results for Random Forest (RF) and our TempCNN model, respectively. The images in the last column displays in red the disagreement between both classifiers. Legend of land cover maps is given in <a href="#remotesensing-11-00523-t001" class="html-table">Table 1</a>.</p> ">
Abstract
:1. Introduction
1.1. Traditional Approaches for SITS Classification
1.2. Deep Learning in Remote Sensing
1.2.1. Convolutional Neural Networks
1.2.2. Recurrent Neural Networks
1.3. Our Contributions
- demonstrating the potential of TempCNNs against RFs and RNNs,
- showing the importance of temporal convolutions,
- evaluating the effect of additional hand-crafted spectral features such as vegetation indices,
- exploring the architecture of TempCNNs.
2. Temporal Convolutional Neural Networks
2.1. General Principles
2.2. Temporal Convolutions
2.3. Proposed Network Architecture
3. Material and Methods
3.1. Optical Satellite Data
3.2. Reference Data
3.3. Data Preparation
3.3.1. Temporal Resampling
3.3.2. Feature Extraction
3.3.3. Feature Normalization
3.4. Benchmark Algorithms
3.4.1. Random Forests
3.4.2. Recurrent Neural Networks
3.5. Performance Evaluation
4. Experimental Results
- how the proposed TempCNN architecture makes the most of both spectral and temporal dimensions,
- how the filter size of temporal convolutions influence the accuracy,
- how pooling layers influence the accuracy,
- how wide and deep the model should be,
- how the regularization mechanisms help training the model,
- what values should be used for batch size.
4.1. Benefiting from Both Spectral and Temporal Dimensions
4.2. Influence of the Filter Size
4.3. Are Local and Global Temporal Pooling Layers Important?
4.4. How Wide and Deep a Model for Our Data?
4.4.1. Influence of the Width or Bias-Variance Trade-Off
4.4.2. Influence of the Depth
4.5. How to Control Overfitting?
4.6. What Values Should be Used for Batch Size?
4.7. Visual Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Average Pooling |
CNN | Convolutional Neural Network |
GAP | Global Average Pooling |
IB | Brilliance Index |
MP | Max pooling |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
OA | Overall Accuracy |
RF | Random Forests |
RNN | Recurrent Neural Network |
SB | Spectral Band |
SITS | Satellite Image Time Series |
SVM | Support Vector machine |
TempCNN | Temporal Convolutional Neural Network |
References
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Matton, N.; Sepulcre, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. arXiv, 2018; arXiv:1809.04356. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Su, Y.; Jiang, B.; Wang, X. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 2014, 6, 11518–11532. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.; Koetz, B. Production of a dynamic cropland mask by processing remote sensing image series at high temporal and spatial resolutions. Remote Sens. 2016, 8, 55. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; de Queiroz, G.R. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef]
- Postadjian, T.; Le Bris, A.; Sahbi, H.; Mallet, C. Investigating the potential of deep neural networks for large-scale classification of very high resolution satellite images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 183–190. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 881–893. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images. Remote Sens. 2017, 9, 368. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Zeng, C.; Li, X.; Wei, Y. Missing Data Reconstruction in Remote Sensing image with a Unified Spatial-Temporal-Spectral Deep Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4274–4288. [Google Scholar] [CrossRef]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef]
- Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8, 99. [Google Scholar] [CrossRef]
- Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D Deep Learning Approach for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585. [Google Scholar]
- Wu, Z.; Wang, X.; Jiang, Y.G.; Ye, H.; Xue, X. Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 461–470. [Google Scholar]
- Di Mauro, N.; Vergari, A.; Basile, T.M.A.; Ventola, F.G.; Esposito, F. End-to-end Learning of Deep Spatio-temporal Representations for Satellite Image Time Series Classification. In Proceedings of the European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (PKDD/ECML), Skopje, Macedonia, 18–22 September 2017. [Google Scholar]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef]
- RuBwurm, M.; Körner, M. Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images. In Proceedings of the Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1496–1504. [Google Scholar]
- Sun, Z.; Di, L.; Fang, H. Using Long Short-Term Memory Recurrent Neural Network in land cover classification on Landsat and Cropland data layer time series. Int. J. Remote Sens. 2018, 40, 1–22. [Google Scholar] [CrossRef]
- Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Minh, D.H.T.; Ienco, D.; Gaetano, R.; Lalande, N.; Ndikumana, E.; Osman, F.; Maurel, P. Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR Sentinel-1. IEEE Geosci. Remote Sens. Lett. 2018, 15, 464–468. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Benedetti, P.; Ienco, D.; Gaetano, R.; Ose, K.; Pensa, R.G.; Dupuy, S. M3-Fusion: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4939–4949. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 2018, 7, 129. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Convolutional LSTMs for Cloud-Robust Segmentation of Remote Sensing Imagery. In Proceedings of the Spatio-Temporal Workshop on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 2016, 8, 506. [Google Scholar] [CrossRef]
- Mou, L.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 924–935. [Google Scholar] [CrossRef]
- Jia, X.; Khandelwal, A.; Nayak, G.; Gerber, J.; Carlson, K.; West, P.; Kumar, V. Incremental dual-memory LSTM in land cover prediction. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 867–876. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 396–404. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 1 February 2018).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283. [Google Scholar]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENUS and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Idbraim, S.; Ducrot, D.; Mammass, D.; Aboutajdine, D. An unsupervised classification using a novel ICM method with constraints for land cover mapping from remote sensing imagery. Int. Rev. Comput. Softw. 2009, 4, 165–176. [Google Scholar]
- Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 2018, 208, 145–153. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Valero, S.; Pelletier, C.; Bertolino, M. Patch-based reconstruction of high resolution satellite image time series with missing values using spatial, spectral and temporal similarities. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2308–2311. [Google Scholar]
- Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Symposium on Significant Results Obtained from the First Earth, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; Keogh, E. The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2017, 31, 606–660. [Google Scholar] [CrossRef]
- Goldin, D.Q.; Kanellakis, P.C. On similarity queries for time-series data: Constraint specification and implementation. In International Conference on Principles and Practice of Constraint Programming; Springer: Cassis, France, 1995; pp. 137–153. [Google Scholar]
- Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Marais Sicre, C.; Dedieu, G. Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Boureau, Y.L.; Ponce, J.; LeCun, Y. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 111–118. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceedings of the International Conference on Learning and Intelligent Optimization, Rome, Italy, 17–21 January 2011; pp. 507–523. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 2951–2959. [Google Scholar]
Classes | Pixels | Polygons | Legend |
---|---|---|---|
Wheat | 194,699 | 295 | |
Barley | 23,404 | 43 | |
Rapeseed | 36,720 | 55 | |
Corn | 62,885 | 83 | |
Soy | 9481 | 24 | |
Sunflower | 108,718 | 173 | |
Sorghum | 17,305 | 22 | |
Pea | 9151 | 15 | |
Grassland | 202,718 | 328 | |
Deciduous | 29,488 | 24 | |
Conifer | 15,818 | 18 | |
Water | 30,544 | 32 | |
Urban | 292,478 | 307 | |
Total | 1,033,409 | 1419 |
Temporal Sampling | NDVI | SB | SB-NDVI-NDWI-IB | |
---|---|---|---|---|
D = 1 | D = 3 | D = 6 | ||
original | 46 | 138 | 276 | |
2 days | 149 | 447 | 894 |
NDVI | SB | SB-SF | ||
---|---|---|---|---|
No guidance | Random Forest (RF) | 88.17 ± 0.59 | 90.02 ± 1.44 | 90.92 ± 1.22 |
Fully-Connected (FC) | 86.90 ± 1.65 | 91.36 ± 1.15 | 91.87 ± 0.88 | |
Recurrent Neural Network (RNN) | 88.62 ± 0.86 | 92.18 ± 1.43 | 92.38 ± 0.83 | |
CNN with temporal guidance | 90.16 ± 0.94 | 92.74 ± 0.80 | 93.00 ± 0.83 | |
CNN with spectral guidance | 88.24 ± 0.63 | 93.34 ± 0.88 | 93.24 ± 0.83 | |
CNNwith spectro-temporal guidance (TempCNN) | 90.06 ± 0.88 | 93.42 ± 0.76 | 93.45 ± 0.77 |
RFs | RNNs | TempCNNs | |||||||
---|---|---|---|---|---|---|---|---|---|
UA | PA | F-Score | UA | PA | F-Score | UA | PA | F-Score | |
Whe | 94.53 | 94.86 | 94.70 | 95.03 | 94.75 | 94.89 | 95.21 | 95.97 | 95.59 |
Bar | 90.08 | 58.49 | 70.92 | 67.28 | 61.52 | 64.27 | 82.59 | 59.90 | 69.44 |
Rap | 96.52 | 92.70 | 94.57 | 94.86 | 91.26 | 93.02 | 98.34 | 95.61 | 96.96 |
Cor | 91.74 | 97.43 | 94.50 | 95.24 | 96.02 | 95.63 | 94.04 | 97.55 | 95.76 |
Soy | 91.82 | 71.52 | 80.41 | 83.36 | 78.52 | 80.87 | 84.83 | 82.86 | 83.83 |
Sun | 90.09 | 92.15 | 91.11 | 90.02 | 93.27 | 91.62 | 91.02 | 94.56 | 92.76 |
Sor | 75.02 | 30.66 | 43.53 | 66.14 | 49.66 | 56.73 | 78.02 | 47.13 | 58.77 |
Pea | 98.91 | 44.42 | 61.30 | 72.20 | 59.22 | 65.07 | 85.66 | 69.93 | 77.00 |
Gra | 91.54 | 87.01 | 89.22 | 92.49 | 93.69 | 93.09 | 92.84 | 94.92 | 93.87 |
Dec | 81.09 | 68.18 | 74.08 | 78.79 | 75.74 | 77.24 | 79.57 | 74.18 | 76.78 |
Con | 52.55 | 49.01 | 50.71 | 57.56 | 56.05 | 56.79 | 54.48 | 59.45 | 56.86 |
Wat | 99.90 | 99.02 | 99.46 | 99.21 | 97.92 | 98.56 | 99.81 | 99.69 | 99.75 |
Urb | 86.47 | 99.66 | 92.60 | 96.48 | 98.92 | 97.68 | 97.16 | 99.31 | 98.22 |
Reach | 2 | 4 | 8 | 16 | 32 |
---|---|---|---|---|---|
Whe | 95.47 | 95.58 | 95.67 | 95.48 | 95.30 |
Bar | 68.17 | 69.39 | 69.44 | 68.75 | 68.29 |
Rap | 96.76 | 96.93 | 96.73 | 96.58 | 95.58 |
Cor | 95.58 | 95.77 | 96.65 | 96.41 | 96.18 |
Soy | 82.79 | 83.78 | 83.97 | 82.96 | 82.97 |
Sun | 92.44 | 92.76 | 92.82 | 92.74 | 92.87 |
Sor | 54.58 | 58.77 | 61.87 | 62.00 | 61.20 |
Pea | 74.64 | 77.01 | 75.24 | 68.14 | 69.79 |
Gra | 93.82 | 93.85 | 93.95 | 93.17 | 92.86 |
Dec | 76.78 | 76.65 | 76.46 | 76.13 | 76.83 |
Con | 56.57 | 56.49 | 54.21 | 53.88 | 53.80 |
Wat | 99.76 | 99.76 | 99.78 | 99.66 | 99.70 |
Urb | 98.16 | 98.22 | 98.15 | 97.58 | 97.43 |
OA | 93.29 ± 0.82 | 93.42 ± 0.76 | 93.43 ± 0.62 | 93.00 ± 0.85 | 92.79 ± 0.72 |
Overall Accuracy | |
---|---|
Nothing | 90.83 ± 0.82 |
Only dropout | 93.12 ± 0.64 |
Only batch normalization | 92.22 ± 0.86 |
Only validation set | 91.17 ± 0.94 |
Only weight decay | 90.74 ± 1.00 |
All except dropout | 92.07 ± 1.20 |
All except batch normalization | 92.89 ± 0.72 |
All except validation set | 93.68 ± 0.60 |
All except weight decay | 93.52 ± 0.77 |
All | 93.42 ± 0.76 |
Batch Size | Training Time | OA |
---|---|---|
8 | 3 h 45 min | 93.54 ± 0.67 |
16 | 1 h 56 min | 93.65 ± 0.73 |
32 | 1 h 06 min | 93.59 ± 0.74 |
64 | 34 min | 93.43 ± 0.71 |
128 | 19 min | 93.45 ± 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. https://doi.org/10.3390/rs11050523
Pelletier C, Webb GI, Petitjean F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sensing. 2019; 11(5):523. https://doi.org/10.3390/rs11050523
Chicago/Turabian StylePelletier, Charlotte, Geoffrey I. Webb, and François Petitjean. 2019. "Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series" Remote Sensing 11, no. 5: 523. https://doi.org/10.3390/rs11050523
APA StylePelletier, C., Webb, G. I., & Petitjean, F. (2019). Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sensing, 11(5), 523. https://doi.org/10.3390/rs11050523