Convolutional Neural Networks Using Skip Connections with Layer Groups for Super-Resolution Image Reconstruction Based on Deep Learning
<p>VDSR network consisting of one layer group with one skip connection (<math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mi>λ</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>).</p> "> Figure 2
<p>Proposed network structure with skip connections for each layer group (<math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>).</p> "> Figure 3
<p>Comparison of the distribution as a histogram for data generated <span class="html-italic">before ReLU</span> in <math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>11</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>L</mi> <mn>16</mn> </msub> </semantics></math> layers. (<b>a</b>) VDSR (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>−</mo> <mn>0.09</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.17</mn> </mrow> </semantics></math>. (<b>b</b>) VDSR (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>11</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>−</mo> <mn>0.12</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. (<b>c</b>) VDSR (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>16</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>−</mo> <mn>0.19</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.23</mn> </mrow> </semantics></math>. (<b>d</b>) Proposed method (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>−</mo> <mn>0.61</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>2.85</mn> </mrow> </semantics></math>. (<b>e</b>) Proposed method (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>11</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>−</mo> <mn>0.97</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>6.01</mn> </mrow> </semantics></math>. (<b>f</b>) Proposed method (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>16</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>−</mo> <mn>0.28</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.89</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Comparison of the distribution as a histogram for data generated <span class="html-italic">after ReLU</span> in <math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>11</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>L</mi> <mn>16</mn> </msub> </semantics></math> layers. (<b>a</b>) VDSR (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.09</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. (<b>b</b>) VDSR (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>11</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.08</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. (<b>c</b>) VDSR (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>16</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>d</b>) Proposed method (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.27</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.26</mn> </mrow> </semantics></math>. (<b>e</b>) Proposed method (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>11</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.35</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.46</mn> </mrow> </semantics></math>. (<b>f</b>) Proposed method (<math display="inline"><semantics> <msub> <mi>L</mi> <mn>16</mn> </msub> </semantics></math>), <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.12</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Super-resolution image reconstruction results. (<b>a</b>) Ground truth image. (<b>b</b>) The result of the VDSR method (PSNR = 18.94 dB). (<b>c</b>) The result of the proposed method (PSNR = 19.18 dB).</p> "> Figure 6
<p>Super-resolution image reconstruction results. (<b>a</b>) Ground truth image. (<b>b</b>) The result of the VDSR method (PSNR = 29.34 dB). (<b>c</b>) The result of the proposed method (PSNR = 30.31 dB).</p> "> Figure 7
<p>Super-resolution image reconstruction results. (<b>a</b>) Ground truth image. (<b>b</b>) The result of the VDSR method (PSNR = 23.93 dB). (<b>c</b>) The result of the proposed method (PSNR = 24.20 dB).</p> ">
Abstract
:1. Introduction
2. Proposed Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SISR | single image super-resolution |
SRCNN | super-resolution convolutional neural network |
VDSR | very deep super-resolution |
CNN | convolutional neural network |
ReLU | rectified linear unit |
ResNet | residual network |
MF | multiplication factor |
PSNR | peak signal-to-noise ratio |
References
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.; Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the International Conference Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Jiang, Q.; Tan, D.C.; Li, Y.; Ji, S.; Cai, C.; Zheng, Q. Object detection and classification of metal polishing shaft surface defects based on convolutional neural network deep learning. Appl. Sci. 2019, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Dang, L.M.; Min, K.; Lee, S.; Han, D.; Moon, H. Tampered and computer-generated face images identification based on deep learning. Appl. Sci. 2020, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc. Int. Conf. Mach. Learn. 2015, 37, 448–456. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the International Conference Computer Vision Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, Z.; Wang, N. Data-driven sparse structure selection for deep neural networks. arXiv 2018, arXiv:1707.01213. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Timofte, R.; Smet, V.D.; Gool, L.V. A+: Adjusted anchored neighborhood regression for fast super-resolution. In Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 111–126. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for stochastic optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Dataset/Scale | A+ | SRCNN | VDSR | Proposed | |
---|---|---|---|---|---|
36.54 | 36.66 | 37.16 | 37.30 | ||
Set5 | 32.58 | 32.75 | 33.26 | 33.34 | |
30.28 | 30.48 | 30.92 | 31.03 | ||
32.28 | 32.42 | 32.69 | 32.85 | ||
Set14 | 29.13 | 29.28 | 29.52 | 29.62 | |
27.32 | 27.49 | 27.79 | 27.82 | ||
31.21 | 31.36 | 31.69 | 31.75 | ||
B100 | 28.29 | 28.41 | 28.64 | 28.68 | |
26.82 | 26.90 | 27.12 | 27.15 | ||
29.20 | 29.50 | 30.29 | 30.36 | ||
Urban100 | 26.03 | 26.24 | 26.68 | 26.78 | |
24.32 | 24.52 | 24.84 | 24.91 | ||
32.31 | 32.49 | 32.96 | 33.07 | ||
Average | 29.01 | 29.17 | 29.53 | 29.61 | |
27.19 | 27.35 | 27.67 | 27.73 |
Dataset/Scale | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | |
---|---|---|---|---|---|---|---|---|
37.24 | 37.26 | 37.19 | 37.23 | 37.30 | 37.17 | 37.21 | ||
Set5 | 33.27 | 33.32 | 33.30 | 33.27 | 33.34 | 33.20 | 33.20 | |
30.99 | 30.95 | 30.87 | 30.97 | 31.03 | 30.67 | 30.91 | ||
32.83 | 32.76 | 32.80 | 32.82 | 32.85 | 32.68 | 32.76 | ||
Set14 | 29.58 | 29.59 | 29.63 | 29.62 | 29.62 | 29.48 | 29.59 | |
27.77 | 27.80 | 27.79 | 27.80 | 27.82 | 27.65 | 27.77 | ||
31.73 | 31.73 | 31.75 | 31.75 | 31.75 | 31.69 | 31.71 | ||
B100 | 28.68 | 28.69 | 28.70 | 28.70 | 28.68 | 28.63 | 28.68 | |
27.14 | 27.15 | 27.14 | 27.16 | 27.15 | 27.07 | 27.12 | ||
30.31 | 30.33 | 30.35 | 30.38 | 30.36 | 30.25 | 30.25 | ||
Urban100 | 26.73 | 26.78 | 26.76 | 26.82 | 26.78 | 26.63 | 26.73 | |
24.84 | 24.88 | 24.83 | 24.92 | 24.91 | 24.72 | 24.84 | ||
33.03 | 33.02 | 33.02 | 33.04 | 33.07 | 32.95 | 32.98 | ||
Average | 29.56 | 29.60 | 29.60 | 29.60 | 29.61 | 29.49 | 29.55 | |
27.69 | 27.70 | 27.66 | 27.71 | 27.73 | 27.53 | 27.66 |
Running Case | SRCNN | VDSR | Proposed |
---|---|---|---|
Training (per epoch) | 220 | 432 | 441 |
Training (per 60 epoch) | 13,769 | 25,153 | 25,487 |
Test (per image) | 0.103 | 0.101 | 0.105 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Yim, C. Convolutional Neural Networks Using Skip Connections with Layer Groups for Super-Resolution Image Reconstruction Based on Deep Learning. Appl. Sci. 2020, 10, 1959. https://doi.org/10.3390/app10061959
Ahn H, Yim C. Convolutional Neural Networks Using Skip Connections with Layer Groups for Super-Resolution Image Reconstruction Based on Deep Learning. Applied Sciences. 2020; 10(6):1959. https://doi.org/10.3390/app10061959
Chicago/Turabian StyleAhn, Hyeongyeom, and Changhoon Yim. 2020. "Convolutional Neural Networks Using Skip Connections with Layer Groups for Super-Resolution Image Reconstruction Based on Deep Learning" Applied Sciences 10, no. 6: 1959. https://doi.org/10.3390/app10061959
APA StyleAhn, H., & Yim, C. (2020). Convolutional Neural Networks Using Skip Connections with Layer Groups for Super-Resolution Image Reconstruction Based on Deep Learning. Applied Sciences, 10(6), 1959. https://doi.org/10.3390/app10061959