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Abstract: Alzheimer’s disease, a neurodegenerative disorder, refers to a particular onset and course of 

cognitive and functional decline associated with alteration in particular neuropathology. To combat this, 

Nanotechnology is an emerging field that uses nanoparticles acting at the molecular level and has a 

major impact on a wide variety of biomedical and pharmaceutical applications, particularly in treating 

Alzheimer’s disease. This technology is functionalized to effect at the Nanoscale dimension via the use 

of nanocomposites and chimeric peptides having the ability to penetrate the blood-brain barrier (BBB) 

so that drugs can be delivered into the central nervous system. However, nanocomposites can be 

delivered by many routes acting directly on the brain with minimal side effects. Nano diagnostic 

techniques have prime importance in the detection of beta-amyloid complexes and in disease 

progression. Nanorobotic technology is used to eliminate faulty parts in our DNA structure and replace 

it with correct DNA sequences utilizing nanoparticles. Nanocomposites and liposomes designed using 

gold, silica, iron, peptides, vitamins, fullerenes, coumarins, curcumins, chitosan, selenium, 

polyethylene glycols, are used as a targeted drug delivery system as they are capable of carrying and 

delivering drugs into defective brain cells that serve as a brilliant tool for future medicine of Alzheimer’s 

disease. Various synergistic approaches, concepts of design of nanoparticles and nanocomposites are 

summarised in this review indicating treatment methodologies, rapid development in this field. This 

review also focuses on brief information about nanoparticles used to manage Alzheimer’s disease with 

a special focus on nanocarriers. 
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1. Introduction 

The Alzheimer’s disease (AD) is associated with neuropsychiatric and cognitive 

alterations and the most frequent neurodegenerative disease, which results in eventual 
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incapacitation and progressive deficiency [1, 2]. The diseases coronary artery is also a diseased 

heart, and the Alzheimer’s is a disease of the brain. It is believed that Alzheimer’s disease 

begins for 20 years or more before symptoms of this disease rise [3-8], which is unnoticeable 

to the affected person with the change in the brain. After few years of brain changes, individuals 

will experience noticeable changes like language problems and memory loss. Symptoms occur 

because the brain's nerve cells involved in memory, thinking, and learning are destroyed or 

damaged. Neurons in other parts of the brain are also destroyed or damaged as the disease start 

progresses. The nerve cells become affected that enable the person to carry bodily functions 

such as swallowing and walking. In Alzheimer’s disease, the affected person requires around-

the-clock care, becomes bed-bound, and ultimately leads to death.  

People over the age of 65 in the United States alone, 1 of 9 people or 5 million with 

Alzheimer’s disease, are the most common cause of dementia. According to the world health 

organization, in the next decades, the global population will increase quadruple, the 

Alzheimer’s disease patients will reach 114 million by 2050 [9]. Alzheimer’s disease also 

increases the economic burden on healthcare systems apart from social impact [10, 11]. In the 

world, every minute a 20 individual produces dementia, and It is confirmed as 70% 

Alzheimer’s. It is approximated that 4.68 core people were living with dementia in 2017, and 

in 2019, the figure is expected to be imminent to 5 core people. This figure will be doubled 

every 20 years, obtaining 7.5 cores in 2030 and in 2050 13.15 cores approximately [12]. 

The symptoms of Alzheimer’s disease vary from individual to individual, but the most 

common is worsen the ability to remember new information. Other symptoms also develop, 

including difficulties in solving problems, visual visual-spatial, and orientation relationships, 

severe memory loss affecting daily life activities. Some neuropsychiatric issues may occur, like 

personality and mood changes. Age is one of the biggest risk factors of AD. In AD, about 40-

65% of persons have APOE-e4gene (1) and a small risk of amyloid precursor protein 

mutations. Other risk factors involve MCI, education level, family history, cardiovascular 

disease risk factor, traumatic brain injury, and cognitive and social engagement [13].  

Alzheimer’s disease continuum is the disease's progression from unnoticeable brain 

changes to the changes in the brain that causes memory problems and then the physical 

disability. There are three phases during this disease’s continuum- preclinical Alzheimer’s 

disease, Mild cognitive impairment, and dementia (Figure 1) [14-17]. The Progression of 

Alzheimer’s disease risk factors over time are shown in figure 2 [18]. 

The major difficulty which leads to the unsuccessful treatment of AD is the 

complication during drug delivery to the brain because of the blood barrier present in the brain 

[19]. In the last decades, many efforts are made but still crossing the blood-brain barrier is a 

challenge in the development of an effective system to deliver the drug in the treatment of 

neurodegenerative diseases. 

BBB is a complex system consists of various cell types (astroglia, perivascular 

macrophages, basal lamella, pericyte, and endothelial cells). One of the important functions of 

BBB is to prevent the contact between toxic substances and the brain with the help of the 

cerebrospinal fluid blood barrier. About 98% of small-molecule also do not cross BBB [20]. 

This limiting entrance of substances into the brain is due to tight junctions and cell-to-

cell connections, i.e., zonula occludes, mainly by diffusion into brain endothelia [21]. 

Only liposoluble molecules with a size less than 400Da and less than 9 H- bond can 

cross the blood-brain barrier by lipid-mediated diffusion. Such transport of small-molecule 

requires movement through a biological membrane, i.e., lipid bilayer. Only hydrophilic 
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molecules transcellular can cross the endothelial wall. The bidirectional transport through BBB 

can be divided into five categories: ion transport, receptor-mediated transport, active efflux 

transport, caveolae-mediated transport, and carrier-mediated transport [20, 21]. 

 
Figure 1. The progression of Alzheimer’s disease from brain changes. 

 
Figure 2. Progression of Alzheimer’s disease risks factors over time. 

In today’s time, the efficiency of the treatments depends upon administration's route 

directed to the brain. Due to earlier mentioned limitations, i.e., the presence of BBB, generally 

oral and intravenous routes of administration are not efficient. By using invasive methods like 

intracerebral implants, temporal disruption of BBB integrity [22], intracerebroventricular 

infusion [23]. The drugs can be directly administered into brain tissue to overcome the problem 

of blood-brain barriers, but these methods are not suitable for use in humans due to costs and 

safety reasons [24, 25].  

Brain infusion is most commonly used among the other invasive methods for brain 

illness [26]. There is local administration through direct injection using a catheter in the brain 
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that can target anatomical locations in this method. This method's application is limited but 

remains the ultimate option in case of physiological barriers impair the efficacy of other routes 

of drug delivery [26].  

The non-invasive route for drug delivery in the brain is administration by intranasal by 

trigeminal neural and olfactory pathways [27, 28]. The intranasal administration allows the 

delivery of therapeutic agents into the brain because trigeminal and olfactory nerves directly 

connect with CNS. This administration route is an acceptable and safe alternative for parental 

administration of different drugs [29, 30]. The blood capillary shows the presence of a blood-

brain barrier in the endothelium that hinders drug delivery in the CNS is in figure 3, and CNS 

showing important routes of drug delivery to therapeutics are in figure 4. 

 
Figure 3. The blood capillary shows the presence of a blood-brain barrier in the endothelium that hinders drug 

delivery in the CNS. 

 

Traditional strategies for the secure distribution of medicines to the central nervous 

system are improved. These strategies mainly include colloidal drugs, chimeric peptide 

technology, olfactory route, micelles, and liposomes for administration. Nano-enable drug 

delivery systems offer a more promising solution for targeted drug delivery and improve uptake 

of drugs in the brain [31]. Therefore, in this review, a systemic compilation of all the 

information is presented to benefit research groups working on treatment modalities of AD. 

 
Figure 4. CNS showing important routes of drug delivery to therapeutics. 
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2. Molecular View of Alzhemier’s Disease 

Researches have indicated that Alzheimer’s disease results from genetic, lifestyle, and 

environmental factors that impact the human brain over a while. Brain proteins fail to perform 

their job, interrupt brain neuronal cells, and liberate a sequence of toxic events. There are two 

major proteins that namely plagues and tangles. Beta-amyloid is a smaller portion of a large 

protein. When these protein fragments congregate mutually, they produce toxic neuronal 

effects and disturbs cell-to-cell intercommunication. These aggregate to form even larger 

clusters know as amyloid plaques containing cellular detritus. Tau proteins ve a prime function 

in the internal support of a nerve cell; these proteins also help conveyance for carrying nutrients 

and other vital constituents. In AD, tau proteins modify their form and organize themselves 

into assemblies called neurofibrillary tangles. These tangles interrupt the transportation of 

neuronal information and are toxic to brain cells. AD is a higher risk portion at increasing age. 

Though Alzheimer’s is not a part of normal aging, chances are more for developing Alzheimer's 

as you grow older. Other risk factors may include family history and genetics, mild cognitive 

impairment, past head trauma, poor sleep patterns, lifestyle and heart health, obesity, high 

cholesterol, poorly controlled type 2 diabetes, smoking, lack of exercise, and high blood 

pressure. Researches have also indicated that people who have Down syndrome develop 

Alzheimer’s disease faster. It happens because of the presence of chromosome 21 and three 

copies of the gene for a protein that leads to the growth of beta-amyloid. Research has shown 

that women are at more risk because they generally live longer than men. 

During the last stage of AD, as the disease progresses, brain functioning also changes. 

It starts to affect physical functions like swallowing, posture control, bowel and bladder 

regulation. Indication proposes that diet, exercise, and habit changes could reduce the risk of 

heart disease and lower the risk of evolving Alzheimer’s disease and other ailments that can 

cause dementia. Apolipoprotein E gene (APOE) also upsurges the risk of developing AD. Few 

potential possibilities that could eradicate this syndrome may include DNA nanoparticle 

conjugates, nanogels with Aβ anti-assembly that modulate protein folding patterns, fullerenes, 

and their derivatives prevent oxidative stress and neurotoxicity, CeO2 NPs help in 

neuroprotection following redox pathway, Au NPs solubilize Aβ clusters. Drug therapy 

includes the use of memantine and nanoparticles primarily composed of Zinc, Vitamin D 

binding protein, SNPs, Aβ1-42 peptides, coumarin, liposomes and dendrimers, nanospheres 

composed of selenium and curcumin, which reduce amyloid-β. Present Alzheimer’s disease 

medicines might recover symptoms for a short time and could slow down the degree of disease 

progression. 

2.1. Nanotechnology-based diagnosis of Alzheimer’s disease.   

On the way to the early determination of a perplexing sickness-like promotion, we have 

to have a reasonable, ultrasensitive, and particular sub-atomic recognition technique. 

Nanotechnology is very hopeful for the initial diagnosis of Alzheimer’s disease, the sub-atomic 

identification of biomarkers as of late developed application. Can make a sub-atomic 

identification or on obtained samples from the body, i.e., in vitro or inside the body, i.e., in 

vivo, of a realistic point of intent. [32]. 
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3. Proposed In Vitro Nano Symptomatic Methodologies  

3.1. DNA-nanoparticle forms by bio-standardized tag measure. 

Protein biomarkers are decorated to identify 10-18 mol/L (10-15 mol/m3 or attomolar) 

scale as DNA-nanoparticles [33]. Ultra-lowest concentrations of protein biomarkers can be 

identified, through a procedure known as a bio-barcode assay caused by gold carrier 

nanoparticles, which correspond, with hundreds of DNA barcodes, to destination biomarkers 

from particular antibodies. Hence, a singular unit of a biomarker can be identified by centuries 

of DNA barcodes, which can be extra magnified by the polymerase chain reaction process and 

identified by a live signal transmittance. This scheme's researchers challenged to have 

extremely susceptible identification of oligomeric forms of amyloid β-derived diffusible ligand 

(ADDL) in the cerebrospinal fluid of people living with Alzheimer’s through a bio-standard 

tag test [33]. 

3.2. Nanoparticle surface plasmon reverberation.  

A new Alzheimer’s biomarker was investigated as a strategy for developing sub-nuclear 

biomarkers, which are said to be ultra-susceptible and low-priced. It is based on 

nanocomposites' single optical characteristics of a trivalent silver and is termed a nano-sensor 

based on localized surface plasmon resonance. Each variation around the outer nanoparticle 

surface changes the refractive index of the environmental magnetic range during the process. 

The resulting variation changes the refractive index of silver nanoparticles to their maximum 

extent, which may be observable in spectroscopy [34].  

3.3. Burrowing microscopy analysis of structural functions. 

Various other developments and analyses should be there in this field. One is a 

molecular identification method that depends on the principle of electric exposure by scanning 

a tunneling microscope. This procedure is such a manner that it included gold nanoparticles 

(AuNP) and immobilization of specific antibody particles. The summation of the testing 

specimen to the substrate is done, and hence, in the end, conjugates of nanoparticles were 

annexed [35]. 

3.4. Photon-Rayleigh scattering. 

The two-photon-Rayleigh dispersing signal of Gold nanoparticles was ascertained as a 

signal modified by an immunosensor for tau protein, which is amongst the biomarkers of 

Alzheimer’s disorders [21]. A mixture of gold nanoparticles native to the tau sensing agent was 

used to identify tau proteins in a model arrangement in this examination. Following the 

expansion of the tau protein, the basis of biomarker signal changes was the resulting collection 

of AuNP-neutralizer forms [36]. 

4. Recommended In vivo Nano-diagnosis prospective 

4.1. Attractive reverberation artifact (µMRI). 

The utilization of iron oxide NP as a contrast agent in MRI (magnetic resonance 

imaging) techniques [37, 38]. Researchers recently reported the usage of monocrystalline iron 

nanoparticles (MION) and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles as 
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Contrast agents in magnetic resonance imaging which can be applied in vivo identification of 

amyloid peptide plaques in the brain of a transgenic mouse model of Alzheimer disease [39,40]. 

In these studies, conjugation of the Amyloid beta was there on the nanoparticle for the 

identification of amyloid plaques [37, 38]. The measurement of disease through these methods 

was claimed to be minimally invasive. The comparisons are for the magnetic resonance 

imaging enhancement agent is injected intravenously or intra-arterially Alzheimer disease [40]. 

4.2. Medical optical imaging.  

Novel near-infrared fluorescent variation is visual imaging within professionals and as 

a process originated late in vivo description of nuclear biomarkers. The wavelength, which is 

found to belong is the reason behind the scattering of light from these contrast agents and hence 

could penetrate through biological tissues—the basic need for a molecular diagnostic agent for 

Alzheimer-related biomarker (Aβ) [41]. 

4.3. Nanoparticles as medication conveyance vehicles.  

Nanoparticles are nanoscale measured polymeric particles which are comprised of 

characteristic or counterfeit polymers. These are running in size between around 10 and 

1000 nm (1 mm).  

 
Figure 5. Indicating structure of different types of nanocarriers for the treatment of neurodegenerative 

Alzheimer’s brain disease. 

These connect with organic obstructions and effectively go through them and are 

utilized for drugs focusing on and biodistribution of drugs in a controlled way. Medications 

can bound in a type of a strong arrangement or scattering or adsorbed to the surface or 

synthetically appended on nanoparticles uphold transporter stacking (Figure 4). Further, the 
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polymer utilized in the development of nanoparticles improves their strength in the natural 

climate. It additionally helps to intervene in the biodistribution of dynamic mixes, drug 

stacking, drug focusing on transport, delivery, and connection with organic obstructions. In 

any case, in typical cases, Nano polymers' utilization is ends up being obtrusive and harmful 

as their corruption items make difficult issues in the CNS. Notwithstanding, cytotoxicity 

created by nanoparticles or their debasement items stays a significant issue in drug 

advancement. In any case, legitimate enhancements in biocompatibility are essential; 

subsequently, it ought to be the principal worry of future drug research [42]. Indicating the 

structure of the different types of nanocarriers for the treatment of neurodegenerative 

Alzheimer’s brain disease is in figure 5, and the showing structure of nanoparticle and a drug-

loaded nanoparticle is in figure 6.  

 
Figure 6. Showing structure of nanoparticle and a drug-loaded nanoparticle. 

Nanoparticles have tremendous clinical applications and have risen as a significant 

device in nanomedicine than customary medication conveyance techniques [43]. These give 

monstrous focal points concerning tranquilize, focusing on conveyance and delivery. Further, 

their extra potential can be an outfit to consolidate analysis and treatment, filling in as many 

usable rising instruments in nanomedicine [44]. These end up being the best conveyance 

vehicles to convey medications to organic frameworks for more secure therapeutics of an 

assortment of neurodegenerative and infection-created illnesses. These are exceptionally 

productive medication conveyance frameworks that are possibly utilized for some applications, 

primarily in antitumor treatment, quality treatment, Helps treatment, and radiotherapy. 

Likewise, these are utilized to convey proteins, anti-toxins, virostatics, and immunizations and 

are utilized as transporters or vesicles to pass the blood cerebrum hindrance [43, 44]. Likewise, 

these medication conveyance frameworks have expected use in moving sub-atomic and 

immunological operators to the organic framework. These are utilized for quality conveyance 

and to make recombinant remedial peptides incorporated by combining new qualities into the 

cells. It can capably move neurotrophic operators to abrogate neurodegenerative sicknesses. In 

this manner, nanoparticle pervasion permits protected and continued arrival of medication at 

the focused-on hand following 1 or fourteen days of infusion [45]. All the more explicitly, 

nanoparticles have more extensive application in mind tumor treatment and malignancy 

therapy and Alzheimer’s sickness [46]. The Difference between a healthy brain and 

Alzheimer’s disease brain is in figure 7. 

The advantages and key features of nanotechnology are no more hidden now from the 

world.  The major use of nanotechnology is in the medical field. This paper focuses on the 

preparation of new advanced dosage forms, increased drug-loading capacity, which ultimately 

leads to low risk of toxicity, increased dissolution, means to administer the medicine dosage 
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becomes more compliable, studies related to targeted drug delivery, sustained and controlled 

released dosage forms, etc. [47]. 

 
Figure 7. Difference between a healthy brain and Alzheimer’s disease brain. 

The factors involved in influencing the method through which drug is delivered using 

nanotechnology are such as size, end results needed, hydrophilicity and lipophilicity, chemical 

stability, cytotoxicity, the release profile of the drug, and patient compliance with the final 

product [48]. 

Nanogel - The findings of Ikeda et al. give an insight into the Aβ anti-assembly strategy 

[49]. The designing of amphipathic nanogel includes proteins and governs protein folding and 

aggregation. The characteristics are mimicking in nature with chaperones. In the Aβ, nanogels 

are made in such a manner that they inhibit the amyloid genesis process. 

The carbon allotrope fullerene (C60) and its derivatives may form the foundation of the 

neuroprotective composites [50]. The organic application of fullerene, including its antioxidant 

and free radical scavenger potentials, has a unique arrangement that allows it to be linked and 

operative by several active chemical groups in a 3D adjustment [51, 52]. 

The research of Dugan et al. manifested the outcomes of carboxy fullerenes malonic 

acid derivative of C 60, {C63[(COOH) 2]3}) on Aβ 42 caused oxidative pressure including 

neurotoxicity in cultured cortical neurons [50, 53].  Shockingly, the ultimate conclusions of 

functionalized fullerenes derivatives, including carboxy fullerenes, hydroxy fullerene 

(fullerenols), and C 60 HyFn are used in finding novel dosages or medicine for Alzheimer. 

[33]. 

Magnetic materials like Iron oxide are commonly utilized in the biomedical field 

because of their biodegradable capacity, biocompatibility, and superparamagnetic properties. 

Right now, several iron oxide nanoparticles of different sizes are utilized for biomedical 

proposes [54-58]. Iron oxide nanoparticles are used as novel carriers for drug delivery for 

neurodegenerative diseases [59]. Iron oxide also gives positive results in the destruction of 

amyloid plaques using a different mechanism like magnetic field (magnetic hyperthermia), and 

till now, many promising results have been obtained in vitro [60]. In recent times, they use 

contrast media for nuclear magnetic resonance tomography or MRI to detect amyloid β peptide 

inside the brain [61]. In few cases, it has been shown in studies that magnetic nanoparticles 
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were not able to cross the BBB. This limitation can be ignored by modifying their surface with 

appropriate compatible molecules [61].  

The nanoparticles Nano-Ceria Cerium oxide (CeO2) have indicated neuroprotective 

properties in vitro specimens on Alzheimer’s diseases. [62]. This could be possibly due to the 

antioxidative nature of nano-ceria, instigating in the two oxidation-reduction (redox) 

conditions of cerium: Ce2+ and Ce4+ and the resulting oxygen vacay [63, 64]. The findings of 

D’Angelo et al. show Nano-ceria safeguard nerve fibers from cytotoxic implications of Aβ via 

moderating the intracellular signaling pathway engaged in cell death and neuroprotective 

activities [62]. 

One of the nano-polymeric dendrimer [65, 66] macromolecules has a globular form 

with a compactly packed surface [67]. Their configuration has given them numerous 

biomedical potentialities [65, 66]. In recent times, a versatile anti-amyloid approach was 

recommended to treat Alzheimer’s diseases [67]. Patel et al. confirmed that dendrimers (both 

coupled and nonconjugated) could safeguard the cell membrane preventing neuronal toxicity 

due to amyloid-beta sheath, which is the end result of amyloid-beta electrostatic interaction 

with the cell membrane [68]. 

Gold Nanoparticles, Re-solubilization of fibrillar amyloid species is a new 

nanotechnology method for the anti-amyloid approach. Utilization of gold nanoparticles 

(AuNPs) in microwave fields to dissolve amyloid aggregates was shown by Kogan et al. The 

scheme was predicated on disintegrating amyloid-beta particles and prevented additional 

amyloid-beta assemblage through heat energy at a molecular level. A gold nanoparticle bound 

to a precise target, i.e., amyloid-beta, yields thermal energy when a weak microwave field is 

surrounded. Each Gold Nanoparticles brings about accurate 10-14J/s of thermal energy, which 

can break down a fibril, 10-20J binding energy per bond per microsecond without rupturing 

the covalent bond, is twice of stronger in magnitude [69]. 

Gold nanoparticles have possibly reached even a wider application thanks to the 

reproducibility and easiness of their synthesis and the possibility of tuning their size and shape 

to obtain different optical properties [70]. Near-infrared light is known to penetrate deep into 

biological tissues without causing ionizing damage. Suppose gold nanoparticles with 

appropriate properties have penetrated a tumor or other target tissue. A near-infrared laser is 

applied to them. In that case, the particles will heat up and destroy surrounding cells in a process 

known as “photothermal therapy, heat ablation” [70, 71]. This therapy is raising attention as a 

promising strategy for light-induced destruction of Aβ fibrils. However, gold nanoparticles' 

ability to cross the BBB seems to be not completely clear. It is reported that gold nanospheres 

can be used successfully as BBB-crossing vehicles [72]. On the contrary, another recent study 

by Yin and co-workers showed that the BBB crossing of gold nanostars was only possible 

through their association with a cell-penetrating peptide [73]. Finally, gold nanoparticles have 

also been used as a detection tool for Aβ peptide detection based on their aggregation in the 

presence of copper ions [74]. 

Gold nanoparticles have more potential uses as it has easy reproducibility and easiness 

to produce it and good ductile property, which leads to obtaining different optical properties 

[70]. The light near-infrared is penetrated deep into biological tissues without harming the 

ionizing damage. 

Diamondoid Derivatives, the diamondoid-based medication (memantine), is 

commercially available in the market. This drug can slow down the progression of Alzheimer’s 

disease [75]. Memantine (1-amino-3, 5-dimethyladamantane) with Namenda as its marketed 
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name. It is an FDA-approved drug for the treatment of moderate to severe Alzheimer’s cases. 

Memantine works as a neuroprotective drug against excitotoxicity, downregulate excitatory 

neurotransmitters, glutamate, and over-stimulates its membrane receptors, leading to nerve 

damage or cell death. Memantine stops excess NMDA receptor activity without hammering 

the normal cycle [76]. 

Silica Particles are worth mentioning for their wide application in the field of 

nanotechnology due to their versatile and flexible fabrication methods. Silica particle features 

can be tuned to produce different porosity of the material at the nanoscale, which leads to 

utilized as potential storage units for therapeutics or diagnostic agents to effectively acts as 

drug delivery systems [71]. The result of different test procedures on Silica-based nanoparticles 

gives positive outcomes are the therapies of the neurodegenerative disorders, i.e., Alzheimer's 

disease, Amyotrophic lateral sclerosis, Friedreich's ataxia [77, 78].   

 Pd hydride (PdH) complex and as the main component of nanoparticles (drugs) show 

it diminishes in a degree of oxidative stress by the release of increased in-situ and sustained 

release hydrogen. Animals used in this are young mice, and the appearance of these 

nanoparticles is somewhat cuboidal of about 30nm [79]. A vitamin-D binding protein can 

increase amyloid-beta, which gradually acquires over time and means the deposition of 

individual parts. A biocompatible polymer poly (D, L-lactic acid-co-glycolic acid)] 

nanoparticles tested on 5XFAD mice with over-expressive Aβ shows the formation of Aβ 

aggregation slowed down. These nanoparticles are of 226.6±44.4nm size and in Spherical 

shape, and linear in size [80]. Curcumin (Cu) and Selenium (Se) are the main components of 

complex Se-Cur/PLGA. These are nanospheres of Spherical shape and also linear in size 

(70.5±6nm). When tested on transgenic 5XFAD mice, they show a low amount of amyloid- β 

formed [81]. Now, the complex of aqueous extraction of Lampranthus coccineus, Melephora 

lutea, F. aizoceae makes silver nanoparticles which are tested on Male Albino rats of Sprague 

Dawley (Adult). Activity observed is anticholinesterase and antioxidant activity. The 

appearance of these NPs is 12.8nm to 28.19nm in the shape of spherical [82]. Peptide 

monoclonal antibody Aβ1-42 to Polyethylene glycol chain (anti-Aβ142-NPs) are Polyethylene 

glycol embedded nanoparticles which are tested on Alzheimer Disease like transgenic animals 

i.e., mice that later shows the increased Aβ1-42 excretion through the “sorption and desorption 

phenomena”. Its size is 125nm approximately [83]. Zinc-polymer poly (D, L-lactic acid-co-

glycolic acid) complex whose main component is zinc are tested on APP23 mice (Wild type). 

Observed data is that plaque size gets reduced, and the release of proinflammatory cytokines 

Interleukins-6 and Interleukins-18 gets affected. The size is about 200-220nm [84], and the last 

one is coumarin is the main component of TQNP/H102 nanoparticles, i.e., dual-functional 

nanoparticle drug delivery system loaded with β-sheet breaker peptide H102, APP / PS1 

transgenic mice are used for experimentation. TQNP / H102 enhanced β-amyloid degrading 

enzymes, diminished tau protein phosphorylation, improved ability in amyloid plaques, 

enhanced local learning and memory, and secured neuronal junction. Its size is 100nm that may 

increase loading with peptide H102 [85]. 

4.4. Use of carriers for acetylcholinesterase inhibitors.  

Different types of Acetylcholinesterase inhibitors in the market have different modes 

of administration into the body. It can be intranasal or targeted intravenous. Some are, 

Polymeric nanospheres which are formed from the Poly-n-butyl-cyanoacrylate (PBCA) having 

a size of 35-45nm administered through intravenous. Its ligand Blood-brain barrier is 
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polysorbate, and the drug is loaded in  Tacrine or rivastigmine [86, 87]. Another, Polymeric 

capsules made from chitosan of size 5000nm administered intravenous. Drug loaded in Tacrine 

and Its ligand Blood-brain barrier is the magnetic field (magnetite) [88]. Liposomes are another 

example of such Acetylcholinesterase inhibitors made up of composites like cholesterol, and 

phosphatidyl choline is of two main size groups i.e., 112 nm and 180-220 nm, which 

administered through Intranasal. The drug is loaded in  Tacrine α-tocopherol and 

Galanthamine, respectively [89, 90]. 

5. Nanotechnology-Based Treatment of Alzheimer’s Disease.   

5.1. Nanoparticles targeted to Aβ species. 

Some of the nanoparticles are produced so that these target Amyloid β species i.e., 

Liposomes, Polymeric nanospheres, Gold nanoparticles. Liposomes made from a composition 

of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol (CH), Phospholipid-

Curcumin conjugate (DPS-curcumin) having a size of 200nm administered through 

Intracerebroventricular. The ligands target for AD is curcumin [91]. The second type of 

liposomes’s made from composites like DPPC, CH, 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N- [methoxy (polyethylene glycol)-2000] ammonium salt (DSPE-PEG) 

and they have a size of 250 nm administered intravenous. It does the passive type of targeting 

the BBB. The 4-((E)-4-((E)-4- hydroxy styryl)-2-methoxystyryl) phenoxy (methoxy XO4) 

ligand is final ligand of AD target [92]. The third liposome’s compositeBACE1 antisense is 

phosphatidylcholine (PC), or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol 

(CH), DSPE-PEG having size about 140-170nm given thorough in vitro. It does OX26Mab 

Antibody type of targeting the BBB, and the AβMab antibody is a final ligand of AD target 

[93]. The fourth type of liposomes made from Sphingomyelin (SM), cholesterol (CH), 1,2-

Dimyristoyl-sn-glycero-3-phosphatidic acid (DMPA), DSPE-PEG of size about 130 given 

through in vitro binds to anti-transferrin receptor antibody, i.e., R17217 Antibody with BBB 

ligand and targets Phosphatidic acid [94]. The fifth type is made from 

Distearoylphosphatidylcholine (DSPC), CH, DSPE-PEG, with 100-150 nm given through 

intravenous. It binds to ligand BBB is mouse monoclonal transferrin receptor antibody i.e., 

OX26Mab antibody which targeting Antibody is anti-amyloid β peptide antibody i.e., 

19B8MAb for AD [95]. The sixth one composition is sphingomyelin (SM), cholesterol (CH), 

1,2-Dimyristoyl-sn-glycero-3-phosphatidic acid (DMPA) having size 100-150nm given 

through Intraperitoneal. It binds to a peptide derived from the receptor-binding domain of 

apolipoprotein E (CWG-LRKLRKRLLR), i.e., mApoE, which targets Phosphatidic acid. Its 

function is to destabilize brain Aβ aggregates and promote peptide removal crossed the 

selective semipermeable border i.e., Blood-Brain Barrier (BBB) [96]. The seventh type is 

composed of 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) having size 20-35nm 

given through intravenous. It binds to apolipoprotein E3 (ApoE3) Protein with ligand BBB as 

well as targets ligand of AD. Its function is to reduce the deposition of amyloid in the brain 

[97]. The last one liposome’s composition is from PC, DSPE-PEG having size 80-300nm given 

through intravenous It binds to lactoferrin Protein, and Its function is to break β-sheet 

antioxidant [98]. 

Polymeric nanospheres acting as also a carrier is composed of poly (ethylene glycol)-

block-poly (lactic acid (PEG-PLA) having a size of 90-110nm given through intravenous. Its 

ligands BBB is brain penetrating peptide (TGNYKALHPHNG), i.e., TGN, and the target 
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ligands of AD is D-peptide sequence with binding affinity for Aβ (QSHYRHISPAQVC), i.e., 

D-QSH. The function is breaking the β-sheet peptide (HKQLPFFEED), i.e., H102 [99]. 

Gold nanoparticles as a main component or carrier are gold (Au). Two main-sized 

groups are 20-25nm and 15nm given through both are by intravenous. Its function is to inhibit 

the aggregation dissociation antioxidant and inhibits the formation of aggregations, 

respectively [100, 101]. Size group of 20-25 nm is bound with the ligand BBB is passive, and 

the targeted ligand of AD is β-sheet breaker peptide (LPFFD) [100]. The next size group 15 

nm are bound with the ligand BBB is peptide sequence targeting transferrin receptor 

(THRPPMWSPVWP), i.e., THR, and the targeted ligand of AD is β-sheet breaker peptide 

(LPFFD) [101]. Both sequences (for size group of Au is 15nm) of an amino acid (THR, 

LPFFD) are grafted in a single peptide in linear form, i.e., THRPPMWSPVWPCLPFFD 

attached to the nanoparticle gold through the cysteine [101]. 

The nanoparticle tends to treat AD through the reduction of the Amyloids β production 

or by means of immunotherapy against Amyloids β vaccine. The exosome is the carrier of size 

88nm, which is given intravenously. Drug loaded in this is small interfering RNA for BACE1 

(BACE1 siRNA). Its function is to destroy the own BACE1 [102]. Polymeric nanospheres also 

reduce Aβ production composed of Poly (Mannitol-co-PEI) having a size of 170-230nm given 

through intravenous. BACE1 siRNA drug is loaded in these which functions are to diminish 

the own BACE. The drug carrier was made from several polymer particles enclosing by the 

siRNA by electrostatic interactions [103]. Liposome carrier is made from 1-methyl-4,4-

bis(((9Z,12Z)-octadeca9,12-dien-1-yl) oxy) piperidine (YSK05), cholesterol (CH), 1-

(monomethoxy polyethylene glycol 2000)-2,3-dimyristoylglycerol (PEG-DMG) having size 

100-110 given through intracerebroventricular. BACE1 siRNA drug is loaded in these which 

function is to destroy the own BACE1 [104].  

Dendrigraft polymer composed from PEGylated dendrigraft poly-L-lysine (DGL-PEG) 

having a size of 95-110 given through an intravenous (i.v.). Ligands BBB binds to rabies virus 

glycoprotein peptide (sequence: YTIWMPENPRPGTPCDIFTNSRGKRASNG), i.e., RVG29, 

as well as targeted to AD ligands. The drug-loaded in these is pshBACE 1-AS means the drug 

carrier was made from several PEGylated dendrigraft poly-L-lysine particles neighboring by 

Plasmid encoding a short hairpin RNA against the natural antisense BACE1 transcribes the 

non-coding RNAs that monitor BACE1 by electrostatic interconnection. D-Pep means all D 

amino-acid peptide inhibitor of tau fibril formation (sequence, i.e., D-TLKIVW) is grafted onto 

PEGylated dendrigraft poly-L-lysine. Its function is to downregulation of BACE1 level 

inhibition of phosphorylated tau-related fibril [105]. 

Vaccine of liposome made from Dimyristoylphosphatidylcholine (DMPC), dimyristoyl 

phosphatidylglycerol (DMPG), cholesterol (CH), D-erythro-sphingosine-1- phosphate (S1P), 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-Palmitoyl-2-oleoyl-sn-glycero-3-

phosphoglycerol (POPG) and Mono phosphoryl lipid A (MLPA) given through Sub-cutaneous 

or Intra-peritoneal. Drug loaded is Peptide (Palm 1-15) and synthetic amyloid β peptide formed 

by 42 residues (Synt Aβ 1-42) SIP which gives immunotherapy Amyloids β neuroprotection 

[106, 107]. 

5.2. The targeted nanocomposites result in neurofibrillary tangles reduces as a treatment of 

AD. 

The carrier Dendrigraft polymer, which does neurofibrillary tangle inhibition, is made 

from PEGylated dendrigraft poly-L-lysine having a size of 95-110nm given through 
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intravenous. It targets ligand is Peptide (RVG29) and also a ligand BBB. Drug loaded are 

pshBAC E1-AS means the drug carrier was formed by several DGL-PEG particles surrounding 

the pshBACE1-AS, i.e., Plasmid encoding a short hairpin RNA against the natural antisense 

BACE1 transcribes the non-coding RNAs that monitor BACE1 by electrostatic 

interconnection. Poly (D,L-by electrostatic interactions and peptide mean D-Pep, i.e., all D 

amino-acid peptide inhibitor of tau fibril formation (sequence: DTLKIVW) was grafted onto 

PEGylated dendrigraft poly-L-lysine, which function is to down-regulate BACE1 level 

inhibition of phosphorylated tau related fibril [105]. 

Liposome-related vaccines made from dimyristoylphosphatidylcholine, dimyristoyl 

phosphatidyl glycerol, cholesterol, Monophosphoryl lipid A, are given through subcutaneous. 

Peptide tau-fragment, i.e., tetra palmitoylated 16-mer synthetic peptide corresponding to 

human protein Tau sequence 393–408, with phosphorylated residues S396 and S404 is loaded, 

which acts as immunotherapy (Tau) [108].  

5.3. The targeting nanocomposites having characteristics like neuroprotection, antioxidant or 

anti-inflammatory for the treatment of AD.  

Liposomes carrier with compositions like (cholesterol, phosphatidylcholine), (Soybean 

phospholipids, cholesterol, distearoyl-N-(monomethoxy polyethyleneglycol 

succinyl)phosphatidylethanolamine), (Distearoylphosphatidylcholine, cholesterol, distearoyl-

N-(monomethoxy polyethyleneglycol succinyl)phosphatidylethanolamine), 

(Distearoylphosphatidylcholine, cholesterol, distearoyl-N-(monomethoxy polyethyleneglycol 

succinyl)phosphatidylethanolamine), (phosphatidylcholine, cholesterol oleate, 

glyceroltrioleate, Carboxylated polyethylene glycol (100) monostearate) having a size of 180-

220nm, 60-75nm, 180-200nm, 75-170nm respectively. They all are administered through 

Intranasal, Intravenous, Intravenous, Intravenous, respectively. The major function of these 

includes AchE inhibitor and neuroprotection. The ligand BBB is cereport (RMP-7), Protein 

(transferrin), Protein (lactoferrin) and loaded by drug, i.e., Tacrine a-tocopherol, NGF, a-

Mangostin and curcumin [89, 109-111]. 

Nanogel with a composition of (Poly (N-vinyl pyrrolidone, Acrylic acid), having a size 

of 65-100nm given through intraperitoneal. They bind on protein (insulin). Their major 

function is neuroprotection [112].  

Polymeric nanosphere with a composition of different sizes of PLGA (150-200nm) 

given through i.v., orally and in vitro. They bind on mouse monoclonal transferrin receptor 

antibody (OX26Mab), Polysorbate, Peptide (Tet-1), i.e., peptide sequence HLNILSTLWKYR 

on which surviving mutant protein (SurR9-C84A), Estradiol, and curcumin bind, respectively. 

They act as neuroprotective [112-115]. Polymeric nanospheres carrier having a composition of 

poly (D, L-lactic-co-glycolic acid)-block poly(ethylene glycol) and poly-n-butyl-cyanoacrylate 

are having a size of 80-140 and 200nm respectively. They administered in vitro. They bind on 

Protein apolipoprotein E3 (ApoE3), and curcumin is loaded as a drug. They act as antioxidants 

and anti-amyloid [116, 117]. 

Polymeric capsules carrier composed with different size group of chitosan like 140-

240nm administered through intravenous. Curcumin, dexamethasone, Magnevist®, I125, 

cyclophosphamide, etc. are loaded as drugs, and the ligand BBB is an anti-amyloid antibody, 

IgG4.1 i.e., F(ab′)2 fragment of an anti-amyloid antibody, IgG4.1 (pF(ab′)24.1). Their function 

is anti-inflammatory [118]. So, Nanoparticles have been used in numerous fields, various 

branches of science and engineering [119, 120]. 
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6. Conclusions 

 Alzheimer’s disease is marked by a permanent, progressive brain disorder that 

gradually destroys memory and thinking skills and finally diminishes the ability to carry out 

the simplest tasks. AD currently affects more than 30 million people worldwide, with a forecast 

of 60 million by 2050. AD will have huge social and economic impacts in the coming decades. 

The blood-brain barrier is the main challenge in the way of drug delivery to the human brain.  

So, conventional drug delivery systems available in the market could not provide 

enough cytoarchitecture recovery and interconnections that are crucial for practical recovery 

in AD. At the same time, nanotechnological strategies and approaches described in this review 

could eradicate Alzheimer's to a great extent. However, nanotechnology can overcome these 

limitations by introducing novel carrier-based platforms that will target selective release of 

drug payload with on-demand and controlled release kinetics and increased reach via 

modulating or by-passing the blood-brain barrier. Nanomaterials have been studied in 

experimental models of Alzheimer's disease for the administration of anti-Alzheimer agents. 

Several synergistic approaches ve been discussed in detail in this review, giving information 

about symptoms, risk factors, treatment modalities, and the role of nanocomposites in 

controlling the progression of AD. 
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