As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A radiology report is prepared for communicating clinical information about observed abnormal structures and clinically important findings with referring clinicians. However, such observations and findings are often accompanied by ambiguous expressions, which can prevent clinicians from accurately interpreting the content of reports. To systematically assess the degree of diagnostic certainty for each observation and finding in a report, we defined an ordinal scale comprising five classes: definite, likely, may represent, unlikely, and denial. Furthermore, we applied a deep learning classification model to determine its applicability to in-house radiology reports. We trained and evaluated the model using 540 in-house chest computed tomography reports. The deep learning model achieved a micro F1-score of 97.61%, which indicated that our ordinal scale was suitable for measuring the diagnostic certainty of observations and findings in a report.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.