As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this, study, an attempt is made to analyze the corticomuscular coupling of the brain and muscular system in the low-frequency components during ramp descent (RD) and stair descent (SD) locomotion. For this purpose, magnitude squared coherence (MSC) is computed from the simultaneous EEG and EMG signals recorded during the ramp and stair descent tasks. The MSC is extracted from the low- frequency bands such as delta (0.1–3 Hz) and theta bands (4–7 Hz). The study utilizes a publicly available database consisting of simultaneous recorded EEG, lower limb EMG and full body motion information from ten healthy subjects. The results show that there exists corticomuscular coupling between motor cortex (C1, C2 and Cz contacts) and tibialis anterior muscle activities during RD and SD. In addition, the MSC differs for both the tasks and frequency bands. In delta band frequencies, the MSC is found to be higher in C2 regions. In the case of theta, the MSC is higher in C1 during RD and in Cz during SD. Therefore, the MSC associated with the low frequency components could be used to detect walking intentions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.