As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Automatic detection of ICD-10 codes in clinical documents has become a necessity. In this article, after a brief reminder of the existing work, we present a corpus of French clinical narratives annotated with the ICD-10 codes. Then, we propose automatic methods based on neural network approaches for the automatic detection of the ICD-10 codes. The results show that we need 1) more examples per class given the number of classes to assign, and 2) a better word/concept vector representation of documents in order to accurately assign codes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.