As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In surgery procedures, haptic interaction provides surgeons with indispensable information to accurately locate the surgery target. This is especially critical when visual feedback cannot provide sufficient information and tactile interrogation, such as palpating some region of tissue, is required to locate a specific underlying tumor. However, in most current surgery simulators, the haptic interaction model is usually simplified into a contact sphere or rod model, leaving arbitrarily shaped intersection haptic feedback between target tissue and surgery instrument less unreliable. In this paper, a novel haptic feedback algorithm is introduced for generating the feedback forces in surgery simulations. The proposed algorithm initially employs three Layered Depth Images (LDI) to sample the 3D objects in X, Y and Z directions. A secondary analysis scans through two sampled meshes and detects their penetration volume. Based on the principle that interaction force should minimize the penetration volume, the haptic feedback force is derived directly. Additionally, a post-processing technique is developed to render distinct physical tissue properties across different interaction areas. The proposed approach does not require any pre-processing and is applicable for both rigid and deformable objects.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.