[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Open Access
August 2009 Discrete chain graph models
Mathias Drton
Bernoulli 15(3): 736-753 (August 2009). DOI: 10.3150/08-BEJ172

Abstract

The statistical literature discusses different types of Markov properties for chain graphs that lead to four possible classes of chain graph Markov models. The different models are rather well understood when the observations are continuous and multivariate normal, and it is also known that one model class, referred to as models of LWF (Lauritzen–Wermuth–Frydenberg) or block concentration type, yields discrete models for categorical data that are smooth. This paper considers the structural properties of the discrete models based on the three alternative Markov properties. It is shown by example that two of the alternative Markov properties can lead to non-smooth models. The remaining model class, which can be viewed as a discrete version of multivariate regressions, is proven to comprise only smooth models. The proof employs a simple change of coordinates that also reveals that the model’s likelihood function is unimodal if the chain components of the graph are complete sets.

Citation Download Citation

Mathias Drton. "Discrete chain graph models." Bernoulli 15 (3) 736 - 753, August 2009. https://doi.org/10.3150/08-BEJ172

Information

Published: August 2009
First available in Project Euclid: 28 August 2009

zbMATH: 1153.65309
MathSciNet: MR2555197
Digital Object Identifier: 10.3150/08-BEJ172

Keywords: Algebraic statistics , categorical data , Conditional independence , Graphical model , Markov property , path diagram

Rights: Copyright © 2009 Bernoulli Society for Mathematical Statistics and Probability

Vol.15 • No. 3 • August 2009
Back to Top