[1] Wagh, K.P. and Vasanth, K.Review on Various Emotional Disorders by Analyzing Human Brain Signal Patterns (EEG Signals). In2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), IEEE, pp. 1-10, 2019. [2] Wagh K.P., Vasanth K., andShinde S.B.EEG Based Emotional State Recognition using Time Frequency Parameters. Journal Harbin Institute of Technology, vol. 54, no. 1, pp. 101-109, 2022. [3] Wagh, K.P. and Vasanth, K. Electroencephalograph (EEG) Based Emotion Recognition System: A Review.Innovations in Electronics and Communication Engineering: Proceedings of the 6th ICIECE 2017, pp. 37-59, 2019. [4] Duan R.N., Zhu J.Y., andLu B.L.Differential Entropy Feature for EEG-Based Emotion Classification. In2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, pp. 81-84, 2013. [5] Zheng, W.L. and Lu, B.L.Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Transactions on autonomous mental development, vol. 7, no. 3, pp. 162-175, 2015. [6] Zheng W.L., Zhu J.Y., andLu B.L.Identifying Stable Patterns Over Time for Emotion Recognition from EEG. IEEE Transactions on Affective Computing, vol. 10, no. 3, pp.417-429, 2017. [7] Li X., Song D., Zhang P., Zhang Y., Hou Y., andHu B.Exploring EEG Features in Cross-Subject Emotion Recognition. Frontiers in neuroscience, vol. 12, pp. 162, 2018. [8] Rahman M.A., Hossain M.F., Hossain M., andAhmmed R.Employing PCA and T-Statistical Approach for Feature Extraction and Classification of Emotion from Multichannel EEG Signal. Egyptian Informatics Journal, vol. 21, no. 1, pp. 23-35, 2020. [9] Asghar M.A., Khan M.J., Fawad Amin,Y., Rizwan, M., Rahman, M., Badnava, S., and Mirjavadi, S.S. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach. Sensors, vol. 19, no. 23, pp. 5218, 2019. [10] Kumar, D.K. and Nataraj, J.L.Analysis of EEG Based Emotion Detection of DEAP and SEED-IV Databases using SVM, 2019. [11] Qing C., Qiao R., Xu X., andCheng Y.Interpretable Emotion Recognition using EEG Signals.IEEE Access, vol. 7, pp. 94160-94170, 2019. [12] Al-Nafjan, A., Hosny, M., Al-Ohali, Y., and Al-Wabil, A. Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review. Applied Sciences, vol. 7, no. 12, pp. 1239, 2017. [13] Liu J., Meng H., Nandi A., andLi M.Emotion Detection from EEG Recordings. In2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD), IEEE, pp. 1722-1727, 2016. [14] Khateeb M., Anwar S.M., andAlnowami M.Multi-Domain Feature Fusion for Emotion Classification using DEAP Dataset. IEEE Access, vol. 9, pp. 12134-12142, 2021. [15] Petrantonakis, P.C. and Hadjileontiadis, L.J.Adaptive Emotional Information Retrieval from EEG Signals in the Time-Frequency Domain. IEEE transactions on signal processing, vol. 60, no. 5, pp. 2604-2616, 2012. [16] Conneau, A.C. and Essid, S.Assessment of New Spectral Features for EEG-Based Emotion Recognition. In2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 4698-4702, 2014. [17] Kao F.C., Wang S.R., andChang Y.J.Brainwaves Analysis of Positive and Negative Emotions. ISAA, vol. 12, pp. 1263-1266, 2015. [18] Hu B., Li X., Sun S., andRatcliffe M.Attention Recognition in EEG-Based Affective Learning Research using CFS+ KNN Algorithm. IEEE/ACM transactions on computational biology and bioinformatics, vol. 15, no. 1, pp. 38-45, 2016. [19] Jadhav N., Manthalkar R., andJoshi Y.Effect of Meditation on Emotional Response: An EEG-Based Study. Biomedical Signal Processing and Control, vol. 34, pp. 101-113, 2017. [20] Zamanian, H. and Farsi, H.A New Feature Extraction Method to Improve Emotion Detection using EEG Signals. ELCVIA: electronic letters on computer vision and image analysis, vol. 1, no. 1, pp. 29-44, 2018. [21] Liu W., Qiu J.L., Zheng W.L., andLu B.L.Multimodal Emotion Recognition using Deep Canonical Correlation Analysis.arXiv preprint arXiv:1908.05349, 2019. [22] Gupta V., Chopda M.D., andPachori R.B.Cross-Subject Emotion Recognition using Flexible Analytic Wavelet Transform from EEG Signals. IEEE Sensors Journal, vol. 19, no. 6, pp. 2266-2274, 2018. [23] Zhang T., Zheng W., Cui Z., Zong Y., andLi Y.Spatial-Temporal Recurrent Neural Network for Emotion Recognition. IEEE transactions on cybernetics, vol. 49, no. 3, pp. 839-847, 2018. [24] Zhang G., Yu M., Liu Y.J., Zhao G., Zhang D., andZheng W.SparseDGCNN: Recognizing Emotion from Multichannel EEG Signals.IEEE Transactions on Affective Computing, 2021. [25] Polat M.S.O.H., Emotion Recognition Based on EEG Features in Movie Clips with Channel Selection. [26] Wagh K.P., Vasanth K., andShinde S., Emotion Recognition Based on EEG Features with Various Brain Regions. [27] Becker H., Fleureau J., Guillotel P., Wendling F., Merlet I., andAlbera L.Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources. IEEE Transactions on Affective Computing, vol. 11, no. 2, pp. 244-257, 2017. [28] Wagh, K.P. and Vasanth, K.Performance Evaluation of Multi-Channel Electroencephalogram Signal (EEG) Based Time Frequency Analysis for Human Emotion Recognition. Biomedical Signal Processing and Control, vol. 78, pp. 103966, 2022. |