
An Efficient Symmetric Searchable Encryption Scheme for
Cloud Storage

Xiuxiu Jiang1, 2, Xinrui Ge1, Jia Yu1, 2, 3∗, Fanyu Kong4, Xiangguo Cheng1, and Rong Hao1

1College of Computer Science and Technology, Qingdao University, 266071 Qingdao, China
2Institute of Big Data Technology and Smart City, Qingdao University, 266071 Qingdao, China

3State Key Laboratory of Information Security, Institute of Information Engineering
Chinese Academy of Sciences, 100093 Beijing, China

4Institute of Network Security, Shandong University, 250100 Jinan, China

Abstract

Symmetric searchable encryption for cloud storage enables users to retrieve the documents they want
in a privacy-preserving way, which has become a hotspot of research. In this paper, we propose an
efficient keyword search scheme over encrypted cloud data. We firstly adopt a structure named as
inverted matrix (IM) to build search index. The IM is consisted of index vectors, each of which is
associated with a keyword. Then we map a keyword to an address used to locate the correspond-
ing index vector. Finally, we mask index vectors with pseudo-random bits to obtain an encrypted
enlarged inverted matrix (EEIM). Through the security analysis and experimental evaluation, we
demonstrate the privacy and efficiency of our scheme respectively. In addition, we further consider
two extended practical search situations, i.e., occurrence queries and dynamic user management, and
then give two relevant schemes.

Keywords: symmetric searchable encryption, cloud storage, privacy, efficiency

1 Introduction

Cloud computing has become a new ideal model of calculation [11, 13, 29]. It has been considered
as the next generation and extension of information technology. It has great benefits for consumers,
including on-demand high quality services, ubiquitous network access, rapid configuration of computing
resources and flexible charging methods, etc. The new promising computing model[22] can not only
deal with the pressure on individual storage management, but also avoid devoting massive resources to
the local hardware and software for users. Owing to the advantages of cloud computing, both enterprises
and individuals storage their local large amounts of data on the cloud actively.

However, cloud service providers (CSP) are independent entities. The internal operation details of
cloud platform are opaque to users. In the cloud storage system, users cannot possess their data physically
any more causing that users and cloud service providers are not in the same trusted domain. So users
cannot fully trust the cloud service provider. With full access to the underlying operating system, the
cloud administrators may actively reveal data information to unauthorized parties. Moreover, the server
may be subject to attacks from hackers, leading to information disclosure passively. For the sake of
protecting the privacy of the data, it is necessary to encrypt the sensitive data, such as e-mails, personal
medical records, company secrets, government documents, from consumers, before being uploaded to
the cloud. Considering the large amount of outsourcing data and data sharing in the cloud computing,
data owners want to receive the data of interest each time accessing to the cloud server. So for users, there
are new challenges to search the encrypted cloud data[14]. The simplest way of solving this problem is

Journal of Internet Services and Information Security (JISIS), volume: 7, number: 2 (May 2017), pp. 1-18
∗Corresponding author: Email: qduyujia@gmail.com, Tel: +86053285953215

1

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

downloads all the cipher-text. Then users decrypt all the data locally. As we all know, this method is
obviously impractical, because it needs huge amount of bandwidth cost in cloud scale systems[1, 6].
Besides, keyword-search approaches allow users to obtain their favourite files. These approaches also
have been extensively used in the plain-text search context, such as Google search. But unfortunately,
these traditional keyword-search approaches regarding plaintext aren’t applicable to encrypted cloud data
directly by reason that the data encryption complicates data utilization services. Hence, the most helpful
method to address the problem is searchable encryption. It allows users to selectively retrieve files from
the cloud using a keyword-based search technology [18].

In recent years, the searchable encryption [4, 8, 9, 15, 21, 23] has been studied intensively by a grow-
ing number of researchers. Various searching keywords schemes on the encrypted cloud data have been
put forward. These programs generally create an encrypted index which will not reveal its contents until
the server is given a valid trapdoor. Searchable encryption can be divided into two main groups: public
key encryption with keyword search and searchable symmetric encryption. Boneh et al [4] proposed
the first searchable encryption scheme. This scheme is used in the public-key cryptography field, where
anyone with the recipient’s public key can create searchable contents, but only when the user holds pri-
vate key can generate valid query requests and decrypt the encrypted documents returned from the cloud.
However, although public key searchable encryption search can support for more application scenarios,
these constructions commonly use a bilinear map, resulting in a large computation cost and low search
efficiency. Compared with the search schemes based on public key, searchable symmetric encryption
with important features such as less calculation, easy to implement, fast computational speed is more
practical in the real life. Song et al[9] proposed the first searchable symmetric encryption scheme. It
is using the block cipher technology in the symmetric key setting. Due to searching the whole cipher-
texts with a sequential scan, it spends amount of searching overhead. Goh et al[15] first formulated
a security index model. It is defined as a semantic security against adaptive chosen keyword attacks
(IND1-CKA)[15]. IND1-CKA cannot guarantee the trapdoor privacy. They also constructed a IND1-
CKA secure index using a Bloom filter and applied it to search over encrypted data. Curtmola et al [23]
gave two formal security notions, i.e. non-adaptive indistinguishability against chosen-keyword attack
(IND-CKA1) and adaptive indistinguishability against chosen-keyword attack (IND-CKA2), presented
two efficient constructions with improved security definitions based on an inverted index data structure
and first defined searchable encrypted encryption in the multi-user setting. In their construction, they
made use of the inverted index to build a hash index table for the whole document collection. Chang
et al.[8] introduced two practical schemes. But in their first scheme, users need to store and manage
a prebuilt dictionary locally. Although this problem was solved in the second scheme, it requires two
interactions between users and the server, which will undoubtedly degrade the user experience. Chase et
al. [21] proposed an adaptively secure construction which generates a padded and permuted dictionary
as an inverted index. The scheme is IND-CKA2 secure and hides the data structure as well. In order to
satisfy users’ increasing needs and enrich search functionality, some new designs supporting conjunctive
keyword search [3, 5, 10, 16, 17] ranked search [26–28, 30] and secure dynamic update[7, 12, 20, 24]
have been developed in recent years.

In this paper, we propose an efficient symmetric searchable encryption scheme for cloud storage.
We firstly use a structure named as Inverted Matrix (IM) to create search index. The IM is made up
of a number of index vectors which are subindices for distinct words in the data set. Specifically, while
constructing the index, each keyword is associated with an index vector and the index vector is denoted by
binary bits. Each bit represents if the keyword appears in the related document. Then we map a keyword
to a value as an address used to locate the corresponding index vector. As a result, users can avoid the
overhead of storing a dictionary locally. Finally, to preserve users’ privacy, we blind the index vectors
using pseudo-random bits to obtain an Encrypted Enlarged Inverted Matrix (EEIM) which can prevent
the server from learning information from the index. Therefore, when a search query is submitted, the

2

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

server just needs to find the matching index vector via the inputted valid request. Users only need a
single interaction with the server to get the data files they are interested in. The major contributions of
this paper are as follows:

1. Based on the new index structure IM, we propose an efficient symmetric searchable encryption
scheme.

2. Through the security analysis and experimental evaluation, we show that the proposed scheme is
adaptive semantic secure and efficient.

3. Upon the proposed search index structure, we present an extended solution that makes our con-
struction can deal with occurrence search to enhance our utility of our scheme in practice.

4. By introducing a dynamic user management mechanism, we make our scheme applicable to multi-
user scenario.

Compared with the conference version in 3PGCIC [19], this paper has the following main differences.
Firstly, we give a more complete and comprehensive introduction for the related work of our proposed
scheme. Secondly, we describe how to extend our scheme to handle the occurrence queries like ”I want
to search all the documents each of which contains ’Panda’ at least ten times”. Furthermore, we consider
to realize dynamic user management which makes it possible that multiple authorized data users are
capable of submitting search requests and sharing the outsourcing data with the data owner. Finally, with
the extensive experimental evaluation results and detailed performance analysis, we verify the efficiency
of our raised construction.

The rest of this paper is organized as follows. In section II, we introduce the problem formulation,
mainly including system model, threat model and design goals. Then section III describes preliminaries,
the definition of Algorithms, and provides the details of our proposed scheme. Followed by Section IV
and section V, they analyze security and performance evaluation. In section VI, we consider two useful
extensions to our basic searchable encryption scheme. In the end, section VII give a conclusion of this
paper.

2 Problem Formulation

2.1 System Model

In this paper, we construct the cloud system model as Fig.1. It involves three different kinds of
parties: the data owner, the data user and the cloud server. The data owner has a set of documents D and
wishes to outsource it in an encrypted form C to the cloud server. For the sake of search efficiency and
data privacy, before uploading, the data owner will firstly extract a set of keywords ∆ from plain-texts
and then construct a secure encrypted index I for the whole data set. The encrypted index I along
with cipher-texts C will be uploaded to the cloud server. In cloud computing, we suppose that it is
well done to authorize users for data owners. When the data users want to retrieve the files containing
a specific keyword of interest, they need to send a corresponding valid trapdoor Tw to the cloud server
to tell cloud that they want to search for some related files. After receiving Tw from a data user, the
cloud server will execute the search operation over the secret index I without any decryption action.
The cloud will return all the related cipher texts containing the queried keyword [6]. Finally, data users
locally decrypt the received cipher-texts with a secret key. The problem of user management in our model
will be introduced as an extension in section VII. The data owner will transport the trapdoors and data
decryption to the data users in a secure channel.

3

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

Figure 1: Architecture of search over encrypted cloud data

2.2 Thread Model

In this model, we consider the cloud server as “honest-but-curious”, as mentioned in most of the
works on cloud security[23]. Its “honesty” is shown in that:

1. the cloud server won’t destroy and temper the stored data;

2. the cloud server will honestly act in pre-defined protocol, i.e., perform the search operation on
the encrypted data for a given keyword and send back the corresponding files associated with the
queries. Its “curiosity” lies on that the cloud server tries to learn the rest of information from the
search queries and the index[6].

2.3 Design Goals

In this paper, our scheme should satisfy the following requirements:

1. Keywordsearch. The scheme allows data users to submit a search query for a keyword and retrieve
all the documents containing the keyword.

2. Privacypreserving. It means that nothing is leaked to cloud server beyond access pattern (i.e., the
ids of the files containing a keyword) and search pattern(i.e., revealing if every search is for the
same word or not). We consider three representative privacy guarantees as follows.

1) Document privacy. This scheme must assure that adversaries won’t know anything from the
encrypted documents. They might only know the respective size, length and ids.

2) Indexprivacy. It requires that the cloud server could not deduce any associated information
between keywords and the stored documents from the encrypted index.

3) Trapdoorprivacy. It guarantees that the trapdoors will not leak any information about the
queried words.

3. E f f iciency. Our scheme should be accomplished with low computation overhead. The running
time of the algorithms in the scheme is applicable in practice.

4

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

3 The Proposed Scheme

In this section, we will present the main algorithms of our scheme and show how to make use of the
Inverted Matrix (IM) to achieve a complete efficient keyword search over encrypted data in the cloud
storage environment step by step. We begin with introducing some notations and relevant structures
which are used in the constructions.

3.1 Preliminaries

3.1.1 Notation

For easier reading, some of the symbols used in this paper are stated as follows.

• Let ∆ = (w1,w2, ...,wm) be a dictionary consisting of m distinct keywords.

• Let D = (D1,D2, ...,Dn) be a collection of n plain-text documents.

• Let C = (C1,C2, ...,Cn) be a set of n encrypted files stored in the cloud.

• Let id(D) be the id of document D.

• Let D(w) denotes the set of the all files’ ids in D containing the keyword w.

• Let Tw be the trapdoor as a search request for the keyword w.

• Let I be the index constructed by data owner for the whole document collection.

3.1.2 IM,EIM,EEIM

IM(Inverted Matrix)
We suppose that IM is a matrix composed of m lines and n columns, where m is the number of

distinct keywords in the dictionary ∆ and the number of documents is n in the data collection D , as
shown in Fig.2. Each line in IM is a binary vector corresponding with a keyword in ∆, which expresses
the containment relationships between the keyword and every document in ∆. For example, we express
the element at the i-th line and the j-th column in IM as IMi, j, where 1 ≤ i ≤ m,1 ≤ j ≤ n. If the value
of IMi, j is 1, it means that the document D j contains the keyword wi. Otherwise, it means the document
D j doesn’t contain the keyword wi. Given any word w , we can search documents which have the word
w via its vector.

EIM(Enlarged Inverted Matrix)
EIM is an enlarged inverted matrix based on IM. To be specific, IM is “stretched”to generate EIM,

while remaining unchanged in width, as illustrated in Fig.2. The main difference between them is that
EIM has much more lines than IM. We suppose that keywords in ∆ can be represented by up to d bits.
Firstly, we initiate the EIM by padding 2d zero vectors which are considered as “empty”. Then we
map each vector in IM to an empty line in EIM according to a certain rule, such that the two vectors
in corresponding places are the same. Without loss of generality, we generally adopt a pseudo-random
permutation with taking a keyword as input to serve as the rule, ensuring the users can locate the matching
vector via the word they want to search.

EEIM(Encrypted Enlarged Inverted Matrix)
EEIM is actually an encryption of EIM. We employ the method of masking the vectors of EIM to

hide the real information. It seems to the cloud server that the entries in EEIM store arbitrary binary
strings with no rules. The final encrypted index constructed in our scheme is EEIM.

5

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

Figure 2: An example of the three structures

3.2 The Definition of Algorithm

There are four polynomial-time algorithms (Keygen, BuildIndex, Trapdoor, Search) in our scheme,
such that,

1. Keygen(1k) is used to generate a key.It is a probabilistic algorithm. Inputing a security parameter
k and outputing a secret key K.

2. BuildIndex(K,D) is an indexes construction algorithm. It inputs a secret key K and a document
collection D , and outputs an index I .

3. Trapdoor(K,w) is a trapdoor generation algorithm. User inputs a secret key K and a keyword w,
and it outputs a corresponding trapdoor Tw.

4. Search(I ,Tw) is a search algorithm. It is took by the cloud. The cloud inputs the encrypted index
I for a data collection D and a trapdoor Tw , and the algorithm outputs a set of documents ids
D(w).

3.3 The Proposed Scheme

In our construction, we assume that the length of words in the dictionary ∆ is at most d bits. We find
a connection between a single index I and a document collection D and associate them. The index I
is denoted by an array of size 2d . Recall that the size of ∆ is m and the size of D is n. Also, we assume
that the documents in D is ordered in lexicographic order of their identifiers and there is a specific array
storing the identifiers of the documents, so it is available to find id(Di) for the server. Besides, we make
use of a pseudo-random permutation π , a pseudo-random function f with the following parameters:

π : {0,1}k×{0,1}d →{0,1}d

f : {0,1}k×{0,1}d →{0,1}n

Our proposed complete scheme is as follows.

6

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

1. Keygen(1k).

The data owner chooses a security parameter k , generates random keys K1,K2 ∈ {0,1}k and out-
puts the secret key K = (K1,K2).

2. BuildIndex(K,D).

The process of building index is as follows.

(1) The data owner selects the different keywords in all the files in the set D to generate the
dictionary ∆. For each word wi ∈ ∆, he/she builds D(wi).

(2) The data owner then builds up an IM-based index structure. He/she generates a n-bit binary
index vector Ii for each keyword wi ∈ ∆. Each binary bit Ii[j] symbols if the related document
D j contains the keyword wi. In other words, for each file D j,1 ≤ j ≤ n, if id(D j) ∈ D(wi),
then he/she sets Ii[j] = 1; otherwise, sets Ii[j] = 0.

(3) Let I be an array of size 2d . For each word wi ∈ ∆, the data owner computes πK1(wi) with
the random key K1 and then sets I [πK1(wi)] = Ii. Other (2d−m) entries of I are set to zero
vectors with n-bit size.

(4) For all addr = 1, ...,2d , the data owner computes fK2(addr) with the random key K2 to
obfuscate the original information. For i = 1,2, ...,m, if addr = πK1(w), then he/she sets
I (addr) = Ii⊕ fK2(addr); otherwise, sets I (addr) = 0n⊕ fK2(addr).

(5) The data owner outputs the index I .

3. Trapdoor(K,w).

With a keyword of interest w , data users compute πK1(wi) and fK2(πK1(w)) using the secret keys
K1,K2 , then send we see Tw = (πK1(w), fK2(πK1(w))) as a search trapdoor and send it to the cloud.

4. Search(I ,Tw).

(1) Parse Tw as (α,β). As soon as the cloud receive the Tw , it firstly locates the matching index
vector via α , denoted as γ , and then uses β to decrypt the vector γ . Let θ be the unencrypted
index vector, i.e. β ⊕ γ = θ . If θ = 0n, it means that there are no documents containing the
inputted keyword and the server needs to response a failure message to the users.

(2) Otherwise, the cloud server scans every bit of the index vector θ and finds which documents
contain the keyword being required. Let X be an empty set. For j = 1, ...n , the cloud server
adds id(C j) to X if θ [j] = 1. At last, the cloud server fetches the documents according to the
identifiers in X and sends back them to the users.

4 Security Analysis

Similar to [23], we formalize a simulation-based adaptive semantic security definition that meets
three privacy requirements described in design goals. Then, we demonstrate that our proposed scheme is
secure in the adaptive setting.

For actually, all the encrypted documents are stored at the cloud server, the query interactions be-
tween the client and server will leak access pattern and search pattern inevitably. Thus, like most previous
secure searchable encryption schemes [23],[16], [7, 12, 24, 28], our work will not take the privacy in-
formation as what we should protect. To express the security analysis briefly, with following a similar
leakage profile of [24], we define two specified leakage functions L1 and L2 to describe what will be

7

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

deduced from the view of the attacker. The function L1(I ,D), its variable is the index I and the doc-
ument collection D and outputs the total size of the dataset |D | , the number of files m , the length of
every document |D j| and the identifiers of each document id(Di) . The function L2(I ,D ,Q) inputs the
index I , D and the keywords setQ that we searched in the past and reveals the access pattern search pat-
terns. As our thought is independent of the encryption method that we choosed for the outsourcing data,
the plaintext can be encrypted by a well-known semantically secure symmetric encryption algorithm
separately. Let εsk be PCPA-secure symmetric encryption scheme.

Definition 1 (adaptive semantic security). Let L1 and L2 be stateful leakage functions, A be a stateful
adversary and S be a stateful simulator. Let k ∈ N be the security parameter. We take the two prob-
abilistic experiments RealA (k) and SimA ,S (k) into consideration. Of which, the challenger and the
adversary A implement the RealA (k), and SimA ,S (k) is carried by A and S .

RealA (k): The challenger generates a key K by running Keygen(1k) and randomly chooses a se-
cret key sk for ε . A sends D to the challenger. The challenger returns I ← BuildIndex(K,D) and
C ← εsk(D) to A . The adversary submits q queries, where q is polynomial in k . The set of q
keywords is denoted as Q = (w1,w2, ...,wq) . For each keyword, the adversary receives a trapdoor
Tw ← Trapdoor(K,w) from the challenger and picks the next keyword as a function of previously ob-
tained trapdoors and search outcomes. Finally, A outputs a bit b .

SimA ,S (k) : A chooses a document collection D and sends it to S . Given L1(I ,D) , S computes
(I ′,C ′) and sends them to A . In the search phase, A makes q queries expressed as Q . For each
keyword, S learns from L2(I ,D ,Q) and returns T ′w to A . Finally, A outputs a bit b.

We say that our scheme satisfies adaptive semantic security if for all probabilistic polynomial-time
(PPT) adversaries A , there exists a PPT simulator S such that |Pr[RealA (k) = 1]|−|Pr[SimA ,S (k) =
1]| ≤ negl(k) , where negl(k) is a negligible function.

Proof Let A and S be an adversary and a simulator in definition 1 respectively. We construct a PPT
S such that for all PPT A , the advantage to distinguish the outputs of above experiments RealA (k)
and SimA ,S (k) is negligible. The simulator S adaptively generates (I ′,C ′,T ′w) as follows.

1. Since S knows the size of each documents in D from the leakage algorithm L1(I ,D) , it will
simulate the encrypted documents C′j ← {0,1}|D j| for j = 1, ...n . Let C ′ = (C′1, ...,C

′
n) . To

simulate the secure index I , S sets I ′ to be a 0,1n× 2d array. For 1 ≤ i ≤ 2d , we randomly
chooses Si←{0,1}n and stores it in each entry of I ′ . Then S sends (C ′,I ′) to A .

2. For the first query, S picks an address addr1 from I ′ at random after A sends w1 to S . We de-
notes I ′[addr1] as s1 . Though the leakage function L2(I ,D ,Q) , S learns D(w1) and generate
a n -bit string I1 . For j = 1, ..,n , it sets I1[j] = 1 if id(D j) ∈ D(w1) ; otherwise, setsI1[j] = 0 .
Then S computes β1 = s1⊕ I1 and then returns T ′w1

= (addr1,β1) to A .

3. For i = 1, ...,q , first S checks whether wi has appeared before. This can be known by checking
the search pattern revealed by L2(I ,D ,Q) . If wi did previously appear, then S retrieves the
trapdoor previously used for wi and uses it as T ′wi

. However, if wi has not previously appeared,
then S generates a trapdoor T ′wi

in the same way as the second step, making sure that the addri

we choose is distinct from any addr used previously. Finally,S returns T ′wi
= (addri,βi) to A .

Recall that Ci is εsk encryption. Since the adversary A doesn’t have the encryption key sk , with all
but negligible probability, the PCPA-security of εsk will guarantee that each encrypted document Ci and
a real ciphertext C′i is indistinguishable. Similarly, in the process of index construction, since we make
use of a pseudo-random function f in RealA (k) , A is unable to distinguish between the outputs of f
and random strings of same size without knowing the key K2 . So, with all but negligible probability, I ′

8

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

is distinguishable from real index. Likewise, since A will not possess K1 , the pseudo-randomness of π

and f will guarantee thatA cannot tell the differences between Twi in RealA (k) and T ′wi
in SimA ,S (k) .

Thus, A cannot distinguish RealA (k) and SimA ,S (k).
Then, we say our proposed scheme is adaptively semantic secure.

5 Performance Evaluation

5.1 Performance Comparison

We compare our construction with previous symmetric searchable encryption schemes CM-1[8],
CM-2 [8], SSE-2 [23] and Sun’s scheme [25] Tab. 1 shows the properties and performance of the above
schemes. Because the storage overhead of cipher-texts varies for different document encryption method,
if we want to make the comparing process easier, we suppose that all the files in C have the same size.
For reducing the communication overheads, we only consider the costs of trapdoors and neglect the size
of the returned cipher-texts.

Comparing to the scheme CM-1, our proposed scheme does not need to store a dictionary in the user
side which reduces data management cost and storage facility spending for users. Comparing to CM-2,
the proposed scheme reduces the storage cost in cloud server and takes only one round for each query. In
terms of communication, we note that the demands are O(n) in SSE-2 and O(1) in our construction. Our
scheme needs far less communication overhead than SSE-2. Among the schemes, only the indexes of
SSE-2 and our scheme hide securely the number of distinct words in the dictionary. As a result, the cloud
server can’t learn statistic information regarding the number of distinct keywords in a specific document
from the encrypted index, which can prevent the server from deducing certain document using the known
background information. Thus, regarding privacy, our scheme is better.

Table 1: Comparison Of Various Schemes
Properties CM-1 CM-2 SSE-2 Sun’s our scheme
server storage O(n) O(n)+O(m) O(n) O(n) O(n)
communication O(1) O(1) O(n) O(1) O(1)
number of rounds 1 2 1 1 1
User storage O(n) O(1) O(1) O(1) O(1)
Hide m No No Yes No Yes

5.2 Experimental Evaluation

To evaluate the efficiency and practicality, we conduct an experimental evaluation for our proposed
scheme. The whole experiments are implemented by using C language on a Linux OS equipped with
2.70GHz Intel(R) Pentium(R) CPU and 4GB RAM. In our experiment, we totally select 10000 real data
files from the on-line database [2]. All the document collections and extracted keywords are based on
the selected data files.

1. Index construction

In the encrypted index structure, every entry in EEIM stores a subindex. Its length is equal to
the number of documents in the data set. To get a subindex, we need to map the corresponding
keyword to an index vector and then encrypt the index vector. The time used for calculating a
subindex depends on the number of all documents. As Fig. 3 shows, when the size of dictionary

9

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

is constant (m=3500), the time spent to build index increases linearly with the size of document
collection. According to the Fig. 3, although the process of index construction in our scheme needs
to cost much time, the operation is just one-time and off-line. This will not affect the performance
evaluation of a scheme too much.

Figure 3: Time cost to Build index with the constant size of dictionary(m=3500)

Figure 4: Time cost to build index with the constant size of document collection (n=1000)

Since the total number of entries in EEIM is determined by the length of the longest word, the
whole index requires 2d × n bits storage space. Given the same document collection (n=1000),
we extract different number of keywords. The Fig. 4 displays that the time cost of building index
is almost unchanged. This is because the real size of dictionary is much less than 2d . From our
experimental results, we can infer that the time taken by building index is heavily affected by the
number of files in the data set. From the perspective of data users, it is available to set more useful

10

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

tokens to keywords of a document, which will not cost additional time.

2. Trapdoor generation

For trapdoor generation, we mainly consider the time to produce pseudo-random bits used to
decrypt the corresponding index vector. The length of pseudo-random bits is same with that of
index vectors, which is determined by the size of document collection. The evaluated results of
generating a trapdoor are shown in Fig. 5. We can observe that the time spent on obtaining a
trapdoor is almost linear with the number of documents in the data set. In the test, when the
number of files is up to 10000, the trapdoor generation is very fast and just needs less than 0.4 ms.

3. Search

The search operation in our proposed scheme includes locating and decrypting the corresponding
entry in EEIM. The time complexity for searching is O(n) . As seen from the Fig. 6, the search
time grows nearly linearly with the increased number of documents in the data set. We can disclose
that when we use 10000 documents to build the index, the time of executing a search algorithm is
less than 0.06 ms, which shows our proposed scheme is efficient and quite applicable in the real
life.

Figure 5: Time cost to generate trapdoor

11

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

Figure 6: Time cost to search

6 Extensions

To enhance the utility of our scheme, here we consider two common situations as extensions to the
basic keyword search scheme. One is occurrence queries and the other is dynamic user management.

6.1 Occurrence Queries

In real life, facing large amount of outsourced documents in the cloud, the data user wants to obtain
some files which contains more queried keywords. They may send a search request such as “I want to
fetch all the files in which ’Panda’ appears more than ten times”. In order to address the problem of
occurrence queries, our scheme can be modified in the following approach.

If a keyword wi occurs si, j times in one documentD j , for every appearance, we label it by concate-
nating wi with z, denoted as w||z , where z is the order in which wi appears in the document D j . We
define the set of labels for a keyword wi in the document D j as OCCUR(wi, j) = {wi||z,1 ≤ z ≤ si, j} .
For example, if the word ”Panda” appears three times in D5 , then we denote OCCUR(“Panda”,5) as
{“Panda1”,“Panda2”,“Panda3”} . In our scheme, only the algorithms BuildIndex(K,D) and Trapdoor(K,w)
need to be changed. Improved details are presented as follows.

1. BulidIndex(K,D).

1) The data owner obtains the distinct keywords from all the documents D by looking over the
whole documents in D . Then he or she generate the dictionary ∆. For each word wi ∈ δ and
each document D j ∈D , he/she derives the set of labels for wi , i.e., OCCUR(wi, j)= {wi||z,1≤
z≤ si, j} , where si, j is the occurrence number of wi in the document D j .

2) The data owner then builds up an IM-based index structure. Assume that maxi is the maximum
value of si, j1 ≤ j ≤ n , i.e., maxi = max

1≤ j≤n
{si, j}. For each keyword wi ∈ δ , and for , he/she

generates a n-bit binary index vector Iiz . For each file D j,1≤ j ≤ n, if wi||z ∈ OCCUR(wi, j) ,
then he/she sets Iiz [j] = 1; otherwise, sets Iiz [j] = 0.

12

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

3) Let I be an array of size 2d . For each keyword wi ∈ δ and for 1 ≤ z ≤ maxi , the data
owner computes πK1(wi||z) with the random key K1 and then sets I [πK1(wi||z)] = Iiz . Other

(2d−
m
∑

i=1
maxi) entries of I are set to zero vectors with n-bit size.

4) For all addr = 1, ...,2d , the data owner computes fK2(addr) with the random key K2 to obfus-
cate the original information and sets I (addr) = I (addr)⊕ fK2(addr).

5) The data owner outputs the index I .

2. Trapdoor(K,w).

When the data user wants to search the documents that contain a keyword w at least z times, he/she
computes πK1(wi||z) and fK2(πK1(wi||z)) using the secret keys K1 , K2 , then sends the trapdoor Tw =
(πK1(wi||z), fK2(πK1(wi||z))) as a search query to the cloud server.

6.2 Dynamic User Management

Our scheme makes use of the system model of multi-users setting where only the data owner is
capable of storing his/her encrypted data on the remote cloud server, whereas an arbitrary user in one
defined group is allowed to submit the search queries and read the outsourcing data. This can realize data
sharing among a multitude of users while preserving privacy in the untrusted cloud storage environment.
A noteworthy problem is how to manage the data users dynamically. In a multi-user environment, when
a user is revoked, the user will not have the access privilege to the owner’s documents any more.

To solve this problem, we introduce the broadcast encryption (BE) scheme to our scheme. This
combination achieves the dynamic management of users. BE is a kind of secure group communication
technology, the main characteristic of which is controlling a group of users’ access permissions without
updating users’ keys. In BE, an encrypted message is transported in a broadcasting channel and only the
authorized user selected by the message sender can decrypt the message to plain-text. Let S denotes the
set of all possible user identifiers, and G ⊆ S the set of users authorized by the data owner. We define
a broadcast encryption scheme concluding four polynomial-time algorithms BE = (Gen,Enc,Add,Dec)
such that:

1. Gen(1k) is a probabilistic key generation algorithm. It takes a security parameter k as input and
outputs a mask key km .

2. Enc(km,G,m) is a message encryption algorithm. It takes a mask key km, a user collection G and
a message m as input, and outputs a cipher-text c .

3. Add(km,u) is a user add algorithm. It takes a mask key km and a user identifier u ∈G as input, and
outputs a the user’s key ku.

4. Dec(km,c,ku) is a decryption algorithm. It takes a mask key km, an encrypted message c and a user
identifier ku as input, and outputs a plain-text m or a failure feedback.

As stated in our threat model, we can see that the cloud server is “honest-but-curious”. We also
suppose that the server is deserved to be believed and it will not collude with revoked users to attack
the entire system. We now describe the approach in details. Let ϕ be a pseudo-random permutation:
ϕ : {0,1}k×{0,1}d+n → n{0,1}d+n, where d + n is the size of a trapdoor in our scheme. We assume
the authorized users include the server. Let ks denote the server key for BE. The data owner generates
the server state stas. And sending it to the server. Let staG denote the state of the group G, the value of
which would be update when a user is removed from G. Next, base on the proposed searchable encryption

13

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

scheme, we explain how we manage users’ privilege of searching on cloud data from three stages: setup
phase, user management phase, and retrieval phase.

In the setup phrase:

1. The data owner chooses a security parameter k and calls Gen(1k) to generate a mask key km of BE.
Then he/she calls Keygen(1k) to generate a secret key K = (K1,K2). Let Ko = (km,K) .

2. The data owner invoke the algorithm BuildIndex(K,D) to construct a secure index I and encrypt
it. The concrete details is same with the work presented in the section III. Then he/she chooses
a key λ ∈ {0,1}k randomly and obtains a server state value stas by computing Enc(km,G,λ).
He/She sets the group state value staG to be λ . Finally, he/she sends the encrypted documents, I
and stas to the cloud server.

In the user management phase:

1. When the data owner wants to share his/her encrypted cloud data with others, he/she can create a
group G. In the G, we allow the authorized users to access to the data owner’s documents in the
cloud server. To add a data user u into G, the data owner computes Add(km,u) to get a user key ku

for BE, then sends the triple (K,ku,λ) to the data user .

2. To remove a data user from the group G, the data owner needs to choose a new key λ ′ ∈ 0,1k and
generates a new sta′s by computing Enc(km,G\u,λ ′), where G\u denotes the set excluding the user
u . He/She sets staG to be λ ′ , and then sends the new sta′s to the server. The server will store sta′s
instead of the old value of stas .

In the retrieval phase:

1. When a data user u wants to query the keyword w , he/she firstly retrieves the latest server state stas

from the server, then uses his/her own key ku to computes Dec(ku,stas). Only if the data user u is
still in the group G, will he/she be able to recover the latest key λ that is the output of Dec(ku,stas).
Then the data user generates a trapdoor Tw for w with the method introduced in section 3. Finally
he/she computes ϕλ (Tw) using ϕ keyed with λ and sends the transposition result to the server.

2. Upon receiving the value ϕλ (Tw) , the server gets the key λ by computing Dec(ku,stas). Then, the
server computes ϕλ

−1(ϕλ (Tw)) to recover the unencrypted trapdoor Tw . At last, the server runs
the algorithm Search(I ,Tw) and sends back the encrypted documents which contain the keyword
w.

Since the mask key km is only known by the data owner. Only the data owner has the permission
to update the data set D , add authorized data users and perform user revocation. Once a data user u is
revoked, the key λ for the pseudo-random permutation ϕ will be updated. At this time the user key ku

will become invalid. The revoked user is not able to perform search operations any more. Using this
solution, our scheme realizes dynamic management of users.

7 Conclusion

In this paper, we propose an efficient symmetric searchable encryption scheme for cloud storage. The
EEIM based search index not only helps users to avoid storing a dictionary in local, but also achieves the
search functionality in one interaction. The given security analysis and intensive experiments on the real
data set indicates that our proposed scheme realizes privacy preserving and practical search efficiency,
which satisfies our design goals. At last, we further present two extended schemes supporting more
search scenarios in the cloud computing including occurrence queries and dynamic user management.

14

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

Acknowledgement

This research is supported by National Natural Science Foundation of China(61572267), the Open
Research Project (2017-MS-21, 2016-MS-23) of State Key Laboratory of Information Security in Insti-
tute of Information Engineering, Chinese Academy of Sciences.

References

[1] http://www.vidhatha.com [Online; Accessed on May 1, 2017].

[2] http://www.cs.cmu.edu/enron/ [Online; Accessed on May 1, 2017].

[3] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive keyword searches over
encrypted data. In Proc. of the 7th International Conference on Information and Communicatoins
Security (ICICS’05), Beijing, China, volume 3783 of Lecture Notes in Computer Science, pages
414–426. Springer, Berlin, Heidelberg, December 2005.

[4] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword
search. In Proc. of the 2004 International Conference on the Thoeory and Applications of Crypto-
graphic Techniques (EUROCRYPT’04), Interlaken, Switzerland, volume 3027 of Lecture Notes in
Computer Science, pages 506–522. Springer, Berlin, Heidelberg, May 2004.

[5] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In Proc. of the
4th Conference on Theory of Cryptography (TCC’07), Amsterdam, Netherlands, volume 4392 of
Lecture Notes in Computer Science, pages 535–554. Berlin, Heidelberg: Springer-Verlag, February
2007.

[6] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-keyword ranked search
over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 25(1):222–233,
January 2014.

[7] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic search-
able encryption in very large databases: Data structures and implementation. In Proc. of the 21st
Annual Network and Distributed System Security Symposium (NDSS’14), San Diego, California,
USA, pages 1–16. Internet Society, February 2014.

[8] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data.
In Proc. of the 3rd International Conference on Applied Cryptography and Network Security
(ACNS’05), New York, New York, USA, volume 3531 of Lecture Notes in Computer Science, pages
442–455. Springer, Berlin, Heidelberg, June 2005.

[9] A. P. D. Song, D. Wagner. Practical techniques for searches on encrypted data. In Proc. of the
2000 IEEE Symposium on Security and Privacy (S&P’00), Berkeley, California, USA, pages 44–
55. IEEE, May 2000.

[10] D.Cash, S.Jarecki, C.Jutla, H.Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Proc. of the 33rd Annual Cryptol-
ogy Conference: Advances in Cryptology (CRYPTO’13), Santa Barbara, California, USA, volume
8042 of Lecture Notes in Computer Science, pages 353–373. Berlin, Heidelberg: Springer-Verlag,
August 2013.

15

http://www.vidhatha.com
http://www.cs.cmu.edu/enron/

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

[11] Q. Do and F. Hussain. A hybrid approach for the personalisation of cloud-based e-governance
services. International Journal of High Performance Computing and Networking, 7(3):205–214,
September 2013.

[12] E. S. E. Stefanov, C. Papamanthou. Practical dynamic searchable encryption with small leakage.
In Proc. of the 21st Annual Network and Distributed System Security Symposium (NDSS’14), San
Diego, California, USA, pages 1–15. Internet Society, February 2014.

[13] M. Ficco. Security event correlation approach for cloud computing. International Journal of High
Performance Computing and Networking, 7(3):173–185, September 2013.

[14] Z. Fu, X. Sun, Z. Xia, L. Zhou, and J. Shu. Multi-keyword ranked search supporting synonym query
over encrypted data in cloud computing. In Proc. of the 32nd IEEE International Performance
Computing and Communications Conference (IPCCC’14), San Diego, California, USA, pages 1–8.
IEEE, February 2014.

[15] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.
iacr.org/2003/216/ [Online; Accessed on May 1, 2017].

[16] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over encrypted data.
In Proc. of the 2nd International Conference on Applied Cryptography and Network Security
(ACNS’04), Yellow Mountaions, China, volume 3089 of Lecture Notes in Computer Science, pages
31–45. Springer, Berlin, Heidelberg, June 2004.

[17] Y. Hwang and P. Lee. Public key encryption with conjunctive keyword search and its extension
to a multi-user system. In Proc. of the 1st International Conference on Pairing-based Cryptogra-
phy (Pairing’07), Tokyo, Japan, volume 4575 of Lecture Notes in Computer Science, pages 2–22.
Springer, Berlin, Heidelberg, July 2007.

[18] X. C. J. Li. Efficent multi-user keyword search over encrypted data in cloud computing. Computing
and Informatics, 32(4):723–738, 2013.

[19] X. Jiang, J. Yu, F. Kong, X. Cheng, and R. Hao. A novel privacy preserving keyword search scheme
over encrypted cloud data. In Proc. of the 10th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC’15), Krakow, Poland, pages 836–839. IEEE, November
2015.

[20] P. V. Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker. Computationally efficient search-
able symmetric encryption. In Proc. of the 7th VLDB Workshop on Secure Data Management
(SDM’10), Singapore, volume 6358 of Lecture Notes in Computer Science, pages 87–100. Berlin,
Heidelberg: Springer-Verlag, September 2010.

[21] S. K. M. Chase. Structured encryption and controlled disclosure. In Proc. of the 16th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security: Ad-
vances in Cryptology (ASIACRYPT’10), Singapore, volume 6477 of Lecture Notes in Computer
Science, pages 577–594. Springer,Berlin,Heidelberg, December 2010.

[22] S. Open. Journal of cloud computing. http://www.journalofcloudcomputing.com [Online;
Accessed on May 1, 2017].

[23] R.Curtmola, J.A.Garay, S.Kamara, and R.Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. In Proc. of the 13th ACM Conference on Copmputer and
Communications Security (CSS’06), Alexandria, Virginia, USA, pages 79–88. ACM, October 2006.

16

http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2003/216/
http://www.journalofcloudcomputing.com

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

[24] C. P. S. Kamara. Parallel and dynamic searchable symmetric encryption. In Proc. of the 17th
International Conference on Financial Cryptography and Data security (FC’13), Okinawa, Japan,
volume 7859 of Lecture Notes in Computer Science, pages 258–274. Berlin, Heidelberg: Springer-
Verlag, April 2013.

[25] W. Sun, X. Liu, W. Lou, Y. Hou, and H. Li. Catch you if you lie to me: Efficient verifiable
conjunctive keyword search over large dynamic encrypted cloud data. In Proc. of the 12th IEEE
Conference on Computer Communications (INFOCOM’15), Hong Kong, pages 2110–2118. IEEE,
May 2015.

[26] A. Swaminathan, Y. Mao, G. Su, H. Gou, A. Varna, S. He, M. Wu, and D. Oard. Confidentiality-
preserving rank-ordered search. In Proc. of the 2007 ACM workshop on Storage Security of Ad hoc
and Sensor Networks (SASN’03), Fairfax, Virginia, USA, pages 7–12. ACM, October 2007.

[27] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword search over encrypted
cloud data. In Proc. of the 30th IEEE International Conference on Distributed Computing Systems
(ICDCS’10), Genova, Italy, pages 253–262. IEEE, June 2010.

[28] C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and efficient ranked keyword search over
outsourced cloud data. IEEE Transactions on Parallel and Distributed Systems, 23(8):1467–1479,
August 2012.

[29] K. Zaerens. Gaining the profits of cloud computing in a public authority environment. International
Journal of Computational Science and Engineering, 7(4):269–279, October 2012.

[30] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski. Zerber+R: Top-k retrieval from a confidential
index. In Proc. of the 12th International Conference on Extending Database Technology: Advances
in Database Technology (EDBT’09), Saint Peterburg, Russia, pages 439–449. ACM, March 2009.

——————————————————————————

Author Biography

Xiuxiu Jiang received B.S. degrees in School of Computer Science and Technology
from Qingdao University, China, in 2013. She will receive M.S. degree in the college
of Computer Science and Technology from Qingdao University, China, in 2016. Her
research is cloud computing security.

Xinrui Ge received B.S. degrees in School of Computer Science and Technology
from Qingdao University, China, in 2016. She is currently a graduate student in the
College of Computer Science and Technology at Qingdao University, China. Her re-
search is cloud computing security.

17

Efficient Symmetric Searchable Encryption Scheme Jiang, Ge, Yu, Kong, Cheng and Hao

Jia Yu received the M.S. and B.S. degrees in School of Computer Science and Tech-
nology from Shandong University, China, in 2003 and 2000, respectively. He received
Ph. D. degree in Institute of Network Security from Shandong University, China, in
2006. He is currently an associate professor in the College of Computer Science and
Technology at Qingdao University, China. His research interests include key evolving
cryptography, digital signature, cryptographic protocol, and network security.

Fanyu Kong received the M.S. and B.S. degrees in School of Computer Science and
Technology from Shandong University, China, in 2003 and 2000, respectively. He
received Ph. D. degree in Institute of Network Security from Shandong University,
China, in 2006. He is currently an associate professor in the Institute of Network
Security at Shandong University, China. His research interests include cryptanalysis,
digital signature, and network security.

Xiangguo Cheng received the B.S. degree in Mathematics Science from Jilin Univer-
sity in 1992, the M.S. degree in Applied Mathematics Science from Tongji University
in 1998, and the Ph.D. degree in State Key Laboratory of Integrated Services Network
of Xidian University in 2006. He is currently an associate professor in the College of
Computer Science and Technology at Qingdao University. His research interests in-
clude computer security, public key cryptosystems, and their applications.

Rong Hao received M.S. degree in Institute of Network Security from Shandong Uni-
versity, China, in 2006. She is currently a lecture in the College of Computer Science
and Technology at Qingdao University, China. Her research interests include digital
signature and secret sharing.

18

	Introduction
	Problem Formulation
	System Model
	Thread Model
	Design Goals

	The Proposed Scheme
	Preliminaries
	Notation
	IM,EIM,EEIM

	The Definition of Algorithm
	The Proposed Scheme

	Security Analysis
	Performance Evaluation
	Performance Comparison
	Experimental Evaluation

	Extensions
	Occurrence Queries
	Dynamic User Management

	Conclusion

