
Baltic J. Modern Computing, Vol. 7 (2019), No. 2, pp. 171–189
https://doi.org/10.22364/bjmc.2019.7.2.01

Parsing with Scannerless Earley Virtual Machines

Audrius Šaikūnas

Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-08663
Vilnius, Lithuania

tuxmarkv@gmail.com

Abstract. Earley parser is a well-known parsing method used to analyse context-free grammars.
While being less efficient in practical contexts than other generalized context-free parsing algo-
rithms, such as GLR, it is also more general. As such it can be used as a foundation to build more
complex parsing algorithms.
We present a new, virtual machine based approach to parsing, heavily based on the original Earley
parser. We show how to translate grammars into virtual machine instruction sequences that are
then used by the parsing algorithm. Additionally, we introduce an optimization that merges shared
rule prefixes to increase parsing performance. Finally, we present and evaluate an implementation
of Scannerless Earley Virtual Machine called north.

Keywords: implementation, scannerless parsing, virtual machine

1 Introduction

Parsing is one of the oldest problems in computer science. Pretty much every compiler
ever written has a parser within it. Even in applications, not directly related to computer
science or software development, parsers are a common occurrence. Date formats, URL
addresses, e-mail addresses, file paths are just a few examples of everyday character
strings that have to be parsed before any meaningful computation can be done with
them. It is probably harder to come up with everyday application example that doesn’t
make use of parsing in some way rather than list the ones that do.

Because of the widespread usage of parsers, it no surprise that there are numerous
parsing algorithms available. Many consider the parsing problem to be solved, but the
reality couldn’t be farther from the truth. Most of the existing parsing algorithms have
severe limitations, that restrict the use cases of these algorithms. One of the newest C++
programming language compiler implementations, the CLang, doesn’t make use of any
formal parsing or syntax definition methods and instead use a hand-crafted recursive
descent parser. The HTML5 is arguably one of the most important modern standards,
as it defines the shape of the internet. Yet the syntax of HTML5 documents is defined by

172 Audrius Šaikūnas

using custom abstract state machines, as none of the more traditional parsing methods
are capable of matching closing and opening XML/HTML tags.

It is clear that more flexible and general parsing methods are needed that are capable
of parsing more than only context-free grammars.

As such, we present a new approach to parsing: the Scannerless Earley Virtual Ma-
chine, or SEVM for short. It is a continuation of Earley Virtual Machine (Šaikūnas,
2017). It is a virtual machine based parser, heavily based on the original Earley parser
(Earley, 1970) and inspired by Regular Expression Virtual Machine (WEB, a). SEVM
is capable of parsing context-free languages with data-dependant constraints. The core
idea behind of SEVM is to have two different grammar representations: one is user-
friendly and used to define grammars, while the other is used internally during parsing.
Therefore, we end up with grammars that specify the languages in a user-friendly way,
which are then compiled into medium-level intermediate representation (MIR) gram-
mars that are executed or interpreted by the SEVM to match various input sequences.

In chapter 2 we present the Scannerless Earley Virtual Machine. Then, in chapter 3
we present the primary optimization for SEVM, which significantly improves parsing
performance. Finally, in chapter 4 we present and evaluate an implementation of SEVM.

2 Scannerless Earley Virtual Machine

2.1 Overview of the parsing process

The parsing process consists of the following primary steps:

1. Translation of input grammar to MIR (medium-level intermediate representation).
In this step, the textual representation input grammar is parsed, analysed for seman-
tic errors, and finally grammar MIR is generated.

2. SEVM initialization: the input data is loaded, necessary data structures for parsing
are initialized.

3. Parser execution: the grammar MIR is either interpreted, or translated into machine
code via just-in-time (JIT) compiler and then executed natively.

4. Optimization: during parser execution, upon invoking a grammar rule, it may be op-
timized using subset construction, potentially merging shared prefixes of multiple
rules to increase parsing performance.

2.2 SEVM structure

A SEVM parser is a tuple 〈chart, exec stack〉:

– chart is an index map from parse positions to chart entries. An index map is a map
that also assigns unique indices to values, allowing to lookup values by both keys
or indices.

– exec stack is the primary execution stack. It stores chart entry indices, which con-
tain at least one active task. The top element of the stack stores the index of cur-
rently active task.

Parsing with Scannerless Earley Virtual Machines 173

A chart entry is a tuple 〈reductions, running, susp task〉:

– reductions is a list of non-terminal reductions.
– running is a stack that stores active tasks.
– susp task is a list of suspended tasks paired with the conditions for waking them.

A task in SEVM is an instance of a (compiled) grammar rule: it represents the
progress of parsing a specific grammar rule at a specified input position. More for-
mally, a task is a state machine that can be represented with a tuple 〈 state id, origin,
position, tree id, grammar id 〉:

– state id is the state index of task’s state machine.
– origin is the origin position of the task (the starting input position).
– position is the current input position. Immediately after creation origin is equal to
position.

– tree id is the index of resulting the parse-tree node.
– grammar id is the grammar index. SEVM supports parsing inputs with multiple

grammars, some of which may be loaded/created dynamically during parsing. This
index refers to the grammar used by the current task.

A suspended task task is a task that has been suspended as a result of another rule
invocation: when a task invokes a rule for parsing another non-terminal in SEVM, it
gets suspended until the task for parsing the callee completes, at which point the caller
is resumed. A suspended task is a tuple 〈 task, pos spec 〉:

– task is the task that has been suspended.
– pos spec is the positive match specifier: a list of conditions for resuming this task.

Each condition entry contains match id, min prec and state id: match id is a
non-terminal match index that allows to match reduction indices. min prec rep-
resents the minimum precedence value of that match. state id is a state index, in
which this task is to be resumed, should a matching reduction occur.

A reduction represents a segment of input where a rule (non-terminal) successfully
matched. More formally, it is a tuple 〈 reduce id, length, tree id 〉:

– reduce id is the reduction index. It represents a concrete non-terminal symbol
which has been matched at the position of the current chart entry.

– length is the length of the match in bytes.
– tree id is the parse-tree index that represents the match.

2.3 MIR structure

Compiled/preprocessed grammars are stored in medium intermediate representation, or
MIR for short. MIR is a abstract syntax tree-like structure that stores the grammars in a
single static assignment (SSA) form.

More precisely, a rule in SEVM MIR is represented as a list of basic blocks. Each
basic block contains 0 or more statement instructions and terminates with exactly one
control instruction. Statement instructions do not alter control flow of execution, while
control instructions do. Instructions are always executed in a context of a task.

There are several primary statement instructions:

174 Audrius Šaikūnas

– StmtReduce reduce id creates a reduction with reduction index reduce id. The
reduction length is computed by subtracting the current task position from task
origin. The reductions are stored in the origin chart entry (the chart entry whose
position is origin). Duplicate reductions are ignored.

– StmtRewind n rewinds the current task by n characters/bytes. It does so by sub-
tracting n from the position of the current task.

– StmtCallRuleDyn call spec creates a new task for parsing rule(s) denoted by
call specifier call spec. The call specifier is a list ofmatch id andmin prec pairs,
where match id refers to the target non-terminal rule (either abstract or concrete)
and min prec is the minimum precedence. Duplicate calls or fully overlapping
calls (whose call specifier is a subset of the union of previously performed calls at
the current position) are ignored.

Additional statement instructions can be added to allow general purpose computa-
tion during parsing (such as arithmetic, logic, memory instructions).

There are several primary control instructions:

– CtlStop terminates the currently running task.
– CtlBr B unconditionally transfers execution to basic block B.
– CtlForkB1, B2, ..., Bn forks the the execution of the current task to basic blocks
B1, B2, ..., Bn. This is typically done by pushing the copies of the current task to
running with updated state id values that correspond to basic blocksBn, Bn−1, ..., B2.
Then the currently running task continues toB1. This instruction is used to fork the
current task into several tasks to traverse several different alternative parse paths.
Multiple successful parse paths mean that the currently parsed fragment is ambigu-
ous.

– CtlMatchChar c→ Bpos, Bneg is used to match terminal symbol c: c is matched
against the terminal symbol at position. If cmatches inputposition, then the position
of the current task is increased by 1 and execution is resumed in Bpos. Otherwise,
the execution is resumed in Bneg . This instruction loosely corresponds to the shift
action of LR parsers, or scanner step of Earley parsers.

– CtlMatchClass a1..b1 → B1, a2..b2 → B2, ..., an..bn → BN , else → Bfail

works similarly to CtlMatchChar, but can be used to match multiple characters
at the same time. If the current input character is in interval ai..bi then the control
is transferred to basic block Bi. If none of the intervals match, then execution is
transferred to Bfail. The input intervals may not overlap. This instruction is typi-
cally implemented by using a transition table to quickly match the input character
against multiple intervals.

– CtlMatchSym pos spec is used to match non-terminal symbols using match
specifier pos spec. This is done by suspending the current task (adding it to susp tasks
of chart entry with matching position). The match specifier is in form 〈M1, P1〉 →
B1, 〈M2, P2〉 → B2, ..., 〈Mn, Pn〉 → Bn. Then, if a reduction occurs, which starts
at position with reduction index reduce id, this task is resumed in basic block Bi,
if reduce id matches 〈Mi, Pi〉, where Mi is a match index and Pi is the minimum
precedence value of that match. It is important to note that this instruction, unlike

Parsing with Scannerless Earley Virtual Machines 175

CtlMatchChar and CtlMatchClass, is non-deterministic and a single reduc-
tion may cause a single suspended task to be resumed multiple times in different
positions.

Suspended tasks are resumed by making a copy of that task in appropriate state id
and adding it to running of the origin chart entry.

To match reduction index R against match index M and minimum precedence
value P , a match table is used. Each grammar contains one match-table MT that
stores entries 〈M1, P1, R1〉, ..., 〈Mn, Pn, Rn〉. If 〈M,P,R〉 ∈ MTgrammar id, where
MTgrammar id is the match table of grammar with index grammar id, then match
index M with minimum precedence value P matches reduction index R in grammar
with index grammar id.

Such match/reduce index separation enables to dynamically create/modify gram-
mars during parsing, enabling to parse adaptable (reflective) grammars (Stansifer and
Wand, 2011). Duplicating an existing match table and adding new entries effectively
extends the grammar. Conversely, duplicating an existing match table and removing
entries from it shrinks the grammar. Both of these operations do not modify the orig-
inal grammar and thus allow to parse input fragments, where grammar extensions are
short-lived and may apply to only a specific block of input. Even more interestingly,
the starts of such blocks may be ambiguous: if a start of a block with updated gram-
mar is ambiguous, then the execution may be forked into two tasks: one with the
original grammar id, where the grammar is unchanged and another with updated
grammar id and corresponding match table. This effectively causes the same input
fragment to be parsed with two completely separate grammars. Just like with CtlFork
instruction, if both parse paths complete successfully, then the parse input is ambiguous.

2.4 Grammar description language

rule main() {
parse "q";

}

(a) concrete grammar rule

rule_dyn expr();

#[part_of(expr, 50)] rule add() {
parse (expr!, "+", expr);

}

#[part_of(expr, 100)] rule zero() {
parse "0";

}

(b) abstract grammar rule with 2 members

Fig. 1: Terminal symbol matching example

Even though SEVM is capable of parsing all context-free languages and thus could
use BNF/eBNF/YACC as the input language for grammars, a new grammar description

176 Audrius Šaikūnas

language has been created for SEVM to expose additional features typically not present
in YACC-like parsers. Existing YACC grammars can be trivially rewritten to SEVM
grammars, as SEVM grammars are a superset of YACC grammars. Some of SEVM
grammar language features are presented in this chapter, but many others are beyond
the scope of this paper as they rely on additional parser features that are not elaborated
in this paper.

The primary unit of grammar composition in SEVM is a grammar rule. There are
two types of grammar rules:

– Concrete grammar rules (commonly referred to as just rules): each rule defines a
single non-terminal and contains body, which is composed out of statements.

– Abstract grammar rules do not have a body, but other concrete grammar rules may
be added with #[part_of(...)] attribute to the abstract grammar rule as mem-
bers. Invoking an abstract grammar rule causes all its members to be invoked, which
is alternative way of writing M1|M2|...|Mn, where Mi is a member of the abstract
grammar rule. This construct provides an extension point for composing multiple
grammars. See fig. 1 for an example of abstract grammar expression. Additionally,
each member of an abstract grammar rule has an associated numeric precedence
value (ranging from 0 to 255), which enables to implement operator precedence
and associativity.

In the SEVM version described in this paper, only one statement exists: the parse
statement, which contains a single grammar expression. Additional statements may

be added to SEVM (such as loops, conditionals, variable declarations, etc) to enable
imperative control of parsing process.

A grammar expression defines a pattern which may be matched/parsed against the
input. There are several grammar expressions in SEVM:

– String literal grammar expressions: "text". They allow to match a sequence of
characters and are translated into a sequence of CtlMatchChar instructions.

– Character class grammar expressions: r"a-zA-Z". They allow to match a single
input character. They are analogous to character classes or character sets found in
regular expressions. Each character class grammar expression is translated into a
single CtlMatchClass instruction.

– Direct rule call grammar expression: A, where A is another concrete grammar rule.
They enable to match non-terminal symbols.

– Non-associative rule call grammar expression: A, where A is another abstract gram-
mar rule. If the grammar expression is a descendant of a member of A with prece-
dence P , then A is invoked with precedence P+1. Otherwise, the precedence value
is 0.

– Associative rule call grammar expression: A!, where A is another abstract grammar
rule. If this expression is a descendant of a member of A with precedence value P ,
then the A is invoked with P .

– Sequence grammar expressions: E1, E2, ..., En, where Ei is another grammar ex-
pression. They allow to compose multiple grammar expressions into a sequence.

– Zero-or-one grammar expression: E? enables to optionally match grammar expres-
sion E.

Parsing with Scannerless Earley Virtual Machines 177

– Zero-or-more grammar expression: E* enables grammar expression E to be matched
zero or more times.

– One-or-more grammar expression: E+ enables grammar expression E to be matched
one or more times.

– Grouping grammar expression: (E) allows to group grammar expression E. The
grouping grammar expression has no additional semantics other than overriding
operator precedence of other grammar expressions.

2.5 Matching terminal symbols

As mentioned in section 2.3, terminal symbols at MIR level in SEVM are matched with
CtlMatchChar and CtlMatchClass instructions. Sequences of terminal symbols
are matched with sequences of corresponding CtlMatchChar and CtlMatchClass
instruction sequences. Optional matching as well as repetition is expressed additionally
with CtlFork instruction.

rule main() {
parse "hello";

}

(a) input grammar

main: {
#0: CtlMatchChar ’h’ => #2, #1
#1: CtlStop
#2: CtlMatchChar ’e’ => #3, #1
#3: CtlMatchChar ’l’ => #4, #1
#4: CtlMatchChar ’l’ => #5, #1
#5: CtlMatchChar ’o’ => #6, #1
#6: StmtReduce R(:main)

CtlStop
}

(b) MIR of input grammar

Fig. 2: Terminal symbol matching example

An example grammar for matching terminal symbol sequence hello and its MIR
are shown in fig. 2, where R(:main) refers to the reduction index of rule main. Each
character of matched sequence is transformed to a corresponding CtlMatchChar
instruction, that on success proceeds to parse the next character and on failure transfers
to basic block #1, which ultimately executes CtlStop that terminates the task.

2.6 Matching non-terminal symbols

Parsing non-terminals in SEVM is significantly more complicated and the process in-
volves at least 3 different instructions. Typically, the process of matching a non-terminal
(calling a grammar rule) can be summarized in the following steps:

1. A task for parsing a non-terminal is created and queued with StmtCallRuleDyn
instruction.

178 Audrius Šaikūnas

2. The caller is suspended with CtlMatchSym instruction.
3. The callee (the newly created task) is executed.
4. Eventually, the callee (if matching was successful) executes StmtReduce instruc-

tion, which causes the caller to be resumed (by making a copy of it with updated
state id and pushing it to the top of running in the appropriate chart entry).

Step 1 may be skipped if the callee, represented by call specifier, was invoked at this
position before. Similarly, CtlMatchSym instruction in step 2 may immediately wake
the caller if there already one or more matching reductions exist at the input position of
the call.

rule other() {
parse "a";

}

rule main() {
parse (

other,
other,
other

);
}

(a) input grammar

other: {
#0: CtlMatchChar ’a’ => #2, #1
#1: CtlStop
#2: StmtReduce R(:other)

CtlStop
}

main: {
#3: StmtCallRuleDyn <M(:other), 0>

CtlMatchSym <M(:other), 0..255> => #4
#4: StmtCallRuleDyn <M(:other), 0>

CtlMatchSym <M(:other), 0..255> => #5
#5: StmtCallRuleDyn <M(:other), 0>

CtlMatchSym <M(:other), 0..255> => #6
#6: StmtReduce R(:other)

CtlStop
}

(b) MIR of input grammar

Fig. 3: Non-terminal symbol matching example

An example grammar and corresponding MIR for matching a sequence of non-
terminal symbols is shown in fig. 3. In the example MIR M(:other) refers to match
index of rule other. Each call to other rule in main is translated into a pair of
StmtCallRuleDyn and CtlMatchSym instructions. In each instance StmtCallRuleDyn
creates a task for parsing other with minimum precedence of 0. Similarly, each
CtlMatchSym suspends the current task, effectively causing execution control to yield
to callee, which eventually performs StmtReduce and terminates with CtlStop.

2.7 Matching repetition

Repetition of terminal, non-terminal symbols and their combinations is performed iden-
tically. All repetitions in SEVM are expressed with CtlFork instruction:

Parsing with Scannerless Earley Virtual Machines 179

– Optional grammar expression A? (where A is any other grammar expression) forks
the execution into two parse paths: one, where A matched 0 times, effectively skip-
ping it, and where it is matched 1 time.

– Zero-or-more grammar expression A∗ is translated similarly to A?, but after suc-
cessfully parsing A, the execution is unconditionally transferred back to the begin-
ning of A∗, causing the parsing of A to loop.

– One-or-more grammar expression A+ first attempts to parse A, and upon success-
ful match, the execution is forked into two paths: one back to the beginning of A+
and one to the successor of A+ (which may be a StmtReduce instruction).

rule zero_or_one() {
parse "a"?;

}

rule zero_or_more() {
parse "a"*;

}

rule one_or_more() {
parse "a"+;

}

(a) input grammar

zero_or_one: {
#0: CtlFork #1, #3
#1: CtlMatchChar ’a’ => #3, #2
#2: CtlStop
#3: StmtReduce R(:zero_or_one)

CtlStop
}
zero_or_more: {

#4: CtlFork #5, #8
#5: CtlMatchChar ’a’ => #7, #6
#6: CtlStop
#7: CtlBr #4
#8: StmtReduce R(:zero_or_more)

CtlStop
}
one_or_more: {

#9: CtlMatchChar ’a’ => #11, #10
#10: CtlStop
#11: CtlFork #9, #12
#12: StmtReduce R(:one_or_more)

CtlStop
}

(b) MIR of input grammar

Fig. 4: Repetition matching example

See fig. 4 for example MIR for parsing each of these repetition operators. For sim-
plicity sake, the repeating element in each rule is terminal character a, but it may contain
any grammar expression.

2.8 The parsing algorithm

Because the majority of parser work is performed within various parsing instructions,
the overall parsing algorithm of SEVM is quite simple:

180 Audrius Šaikūnas

1. Pop the current task from the running of the currently active chart entry:

– If the current running is empty, then remove top element from call stack.
– If call stack is empty, then terminate the parser.

2. Execute the current task either by interpreting the corresponding instructions, or
by invoking the corresponding just-in-time compiled function that implements the
rule. The execution of the current task terminates either with CtlStop instruction,
which completely discards the current task, or with CtlMatchSym which stores the
task in appropriate susp tasks list.

3. Go to step 1.

After the parser terminates, chart entry of position 0 is inspected: if its reduction list
contains a reduction with the starting non-terminal main with total length of the input,
then the the parser successfully analyses the entire input. If no such reduction exists,
then the parser completed unsuccessfully and the chart entry with the highest input
position (more specifically, its susp tasks list) may be analysed to determine which
non-terminals failed to match and caused the parser to fail.

2.9 Obtaining parse forest

The result of SEVM parser is a shared packed parse forest (SPPF). In north, SPPF is
internally represented by a structure similar to a binary tree.

Each task constructs a corresponding SPPF node during its execution. When a new
task is initially constructed, its tree id points to an empty node. CtlMatchSym instruc-
tion appends a new child node when a suspended task is resumed (when a non-terminal
symbol is successfully matched) by creating a new shift node, which contains both the
old tree id value and newly matched child node. CtlReduce instruction creates a re-
duction node that represents a successful parse of a non-terminal.

The parse forest contains 4 types of nodes:

1. Empty nodes. Newly constructed tasks contain an empty tree id.
2. Shift nodes. A shift node is a binary node that contains previous node and a newly

added node.
3. Reduce nodes. Reduce node contains previous tree id and source range (the start

and end offsets) of the reduction.
4. Alternative nodes represent ambiguous parses. These nodes are similar to GLR’s

packing nodes.

When an ambiguous reduction occurs (a reduction, whose position, reduce id and
size match), the original reduce node is converted into alternative node. Alternative
nodes form a linked list out of corresponding ambiguous reduction nodes.

The root of the parse forest can be obtained by inspecting reductions list of chart
entry at position 0.

Parsing with Scannerless Earley Virtual Machines 181

2.10 Parsing with constraints

By introducing additional instructions to SEVM, it is possible to parse grammars with
context-dependent constraints. These constraints are not meant to encapsulate high-
level language semantics (such as disambiguating identifiers from typenames in C),
but rather to allow to parse non-context-free tokens. For example, Ruby programming
language has DOCHERE multiline string tokens than start and terminate both with the
same user-provided string (similar to matching opening and closing tags in XML).

rule backref() {
parse text@

("a" | "b")+;
parse " ";
parse =text;

}

(a) input grammar

backref: {
#0: CtlMatchChar

’a’ => #2, ’b’ => #2, #1
#1: CtlStop
#2: CtlFork #0, #3
#3: %text_end = StmtCurrPos

CtlMatchChar ’ ’ => #4, #1
#4: %text_start = StmtOriginPos

CtlMatchDyn %text_start,
%text_end => #5, #1

#5: StmtReduce R(:backref)
CtlStop

}

(b) MIR of input grammar

Fig. 5: Matching with backreferences

Figure 5 shows a simple grammar rule that uses backreferences: it defines a se-
quence of a and b characters, followed by a space, which is then followed by exact
same sequence of a and b characters. The var@expr grammar expression allows to
capture the input that matches expr to variable var. The @ operator only records initial
and ending positions of the matched input. If the initial position of expr matches the
start of the rule, then rule origin position is used instead.

In MIR this is achieved by introducing 3 additional instructions:

– StmtCurrPos allows to query the current position of the current task.
– StmtOriginPos allows to query the origin position of the current task.
– CtlMatchDyn allows to dynamically match a specified interval of input and to

transfer execution on successful/failed match.

More complicated context-dependant constraints may be added to grammars by in-
troducing additional general-purpose instructions to MIR, however that is beyond the
scope if this paper.

182 Audrius Šaikūnas

3 MIR subset construction optimization

3.1 Overview

In this chapter we present one of the most important optimizations for SEVM: MIR
subset construction. It is based/inspired by the Practical Earley Parser (Aycock and
Horspool, 2002) and Yakker (Jim et al., 2010).

The key idea is rather simple: normally, when countering a grammar expression A

| B | C, where A, B, C represent non-terminals, each of those non-terminals would
be parsed in turn. However this is inefficient, because at very least 3 calls and matches
(which would result in suspended tasks) would be need to parse such grammar expres-
sion. Furthermore, it is possible that A, B, C may share a common prefix that would be
re-parsed on each of invocation of corresponding non-terminal.

To alleviate this problem, MIR subset construction is used. Instead of performing 3
separate (first A, then B, then C) parses, all of these 3 grammar rules (more specifically,
their MIRs) are merged (”optimized”) into a single rule, which is then invoked instead.
In this scenario, parsing A | B | C results in a single StmtCallRuleDyn, which will
invoke the combined rule, and one CtlMatchSym, which will match any of the 3 non-
terminals.

3.2 MIR ε-closures

Much like ε-closures used for converting NFAs to DFAs (Rabin and Scott, 1959), MIR
ε-closures are used to facilitate conversion of non-optimized MIR to optimized MIR.

A MIR ε-closure of a closure-seed is a set of relevant instruction indices reachable
from the closure-seed with no side effects.

A closure-seed is a set of MIR node indices (which may contain rule, basic block
or instruction indices).

A relevant instruction is an instruction that has side-effects (alters any value in the
current task or chart).

Table 1: Rules for constructing MIR ε-closures

Instruction Actions
CtlBr B QUEUE(B)
CtlFork B1, ..., Bn QUEUE(B1); ...; QUEUE(Bn)
CtlMatchChar ADD
CtlMatchClass ADD
CtlMatchSym ADD
CtlStop
StmtCallRuleDyn CS ADD
StmtCallRuleDyn CS (LR) ∀E ∈ CS, QUEUE(E)
StmtReduce A ADD; QUEUE(SUCC)
StmtRewind n ADD

Parsing with Scannerless Earley Virtual Machines 183

MIR ε-closure B can be constructed from closure-seed A with the following algo-
rithm:

1. Add all elements of A to the construction queue Q.
2. For each unique element E in Q, perform the following:

– If E is an abstract rule index, then all the members of that rule to Q (based on
the current grammar).

– If E is a concrete rule index, then add the index of the first basic block of that
rule to Q.

– If E is a basic block, then add the index of the first instruction of that basic
block to Q.

– If E is an index of an instruction, then execute corresponding actions for that
instruction provided in table 1.

Table 1 lists actions to be executed when encountering different instructions in the
construction queue:

– QUEUE(A) adds A to construction queue Q (only if it doesn’t exist already).
– ADD adds the current instruction index to the resulting ε-closure B.

SUCC in rule for StmtReduce refers to successor instruction index. It’s also im-
portant to note that there are two rules for handling StmtCallRuleDyn instructions:
the first one is used when the call is performed not at the beginning of a rule, the second
one is used for the calls that appear at the start of the rule. This effectively causes all
calls that appear at the start of a rule to be inlined when performing subset construction.

3.3 MIR subset construction

The subset construction is most commonly performed as a result of StmtCallRuleDyn
instruction. When that happens, the members of provided call specifier are used as a

closure-seed. The resulting ε-closure then represents instructions that need to be exe-
cuted at the entry point of optimized rule.

Then member instructions of ε-closure are merged:

– CtlMatchChar are merged as equivalent CtlMatchClass.
– CtlMatchClass are merged into a single CtlMatchClass. If the resulting
CtlMatchClass contains overlapping intervals, then target basic blocks of the
overlap are merged (by recursively invoking MIR subset construction with the set
of target basic blocks as the closure-seed).

– CtlMatchSym are merged into a single CtlMatchSym, where overlapping match
conditions are merged by merging the target basic blocks.

– StmtCallRuleDyn are merged by merging their call specifiers.
– Other instructions remain unmerged.

If after merging there is more than one instruction, then they are placed into new
basic blocks which then are executed with a CtlFork instruction. Otherwise the in-
struction is appended to the end of the current basic block.

184 Audrius Šaikūnas

rule A() {
parse ("a", AA);

}

rule AA() { ... }

rule B() {
parse ("a", BB);

}

rule BB() { ... }

rule main() {
parse (

A | B | "c"
);

}

(a) input grammar

main: {
#0: CtlFork #2, #6
#1: CtlStop
#2: CtlMatchClass ’a’..’a’ => #3,

’c’..’c’ => #7,
else => #1

#3: StmtCallRuleDyn <M(:AA), 0>,
<M(:BB), 0>

CtlMatchSym <M(:AA), 0..255> => #4,
<M(:BB), 0..255> => #5

#4: StmtReduce R(:A)
CtlStop

#5: StmtReduce R(:B)
CtlStop

#6: CtlMatchSym <M(:A), 0..255> => #7,
<M(:B), 0..255> => #7

#7: StmtReduce R(:main)
CtlStop

}

(b) optimized MIR for rule main

Fig. 6: Subset construction example

MIR subset construction process then continues recursively when CtlMatchChar,
CtlMatchClass or CtlMatchSym are encountered (also when StmtCallRuleDyn
is encountered at the beginning of a rule). To prevent infinite recursion, ε-closures and
the resulting entry points of those closures are cached.

An example input grammar and its optimized MIR are shown in fig. 6. A and B rules
are inlined into the resulting rule for main. The terminal prefixes of A, B and main are
merged into a single CtlMatchClass instruction (#2). Because A and B have a shared
prefix (a), the calls and matches to AA and BB are merged as well (#3).

3.4 Parsing ambiguities

SEVM, just like the original Earley parser, traverses all available parse paths. Figure 7
shows two ambiguous grammar rules and their optimized MIRs.

In (G)LR family of parsers there are two main types of conflicts arising from gram-
mar ambiguities: SHIFT/REDUCE and REDUCE/REDUCE conflicts.

Rule shift_reduce simulates the scenario of SHIFT/REDUCE conflict: rule shift_reduce
defines a sequence of a characters. However it is not clear when such sequence should
terminate. Because of this the rule after parsing every instance of character a will per-
form a reduction of non-terminal shift_reduce and then attempt to continue at basic
block 0. As a result, a reduction for each possible length of the sequence will be per-
formed.

Parsing with Scannerless Earley Virtual Machines 185

rule shift_reduce() {
parse "a"+;

}

rule a1() {
parse "a";

}

rule a2() {
parse "a";

}

rule reduce_reduce() {
parse a1 | a2;

}

(a) input grammar

shift_reduce: {
#0: CtlMatchChar ’a’ => #2, #1
#1: CtlStop
#2: StmtReduce R(:shift_reduce)

CtlBr #0
}
reduce_reduce: {

#3: CtlFork #4, #5
#4: CtlMatchSym

<M(:a1), 0..255> => #8,
<M(:a2), 0..255> => #8

#5: CtlMatchChar ’a’ => #7, #6
#6: CtlStop
#7: StmtReduce R(:a1)

StmtReduce R(:a2)
CtlStop

#8: StmtReduce R(:reduce_reduce)
CtlStop

}

(b) Optimized MIR of input grammar

Fig. 7: Ambiguous grammar example

Rule reduce_reduce simulates a REDUCE/REDUCE conflict. In this case, all 3
rules a1, a2 and reduce_reduce are merged into a single optimized MIR rule. After
successfully matching character a (basic block 5), two reductions are performed: one
for a1 and another for a2 (basic block 7). After performing the reduction for a1, this
task is awakened at basic block 8. After performing the reduction for a2, no new tasks
are awakened, because it is detected, that the reduction for a2 is ambiguous (matches a
previous reduction for a1).

It is important to reiterate that no parse path under normal conditions is ever tra-
versed multiple times: this is crucial to achieve acceptable performance for using SEVM
in practise. Duplicate parse paths are rejected by inspecting reductionswhile executing
CtlReduce, thus preventing waking the same task twice and by inspecting susp task
while executing StmtCallDyn to ensure that duplicate tasks for the same non-terminal
are not created in the first place.

In case of C programming language, statements like a * b; are parsed ambigu-
ously both as declarations and expressions. As a result, a parse forest is produced with
an ambiguous node indicating both possible parse paths. It is then left up to the user
of SEVM to prune the SPPF manually based on semantic constraints and construct
non-ambiguous AST for further processing.

186 Audrius Šaikūnas

4 Evaluation

4.1 Method

In order to prove that SEVM may be used to parse real-world programming languages,
a SEVM implementation called north was created. In addition to what is described in
this paper, north also contains additional features and optimizations:

– Garbage collection. Chart entries are believed to be no longer necessary are dis-
carded, reducing memory usage and making the implementation more cache-friendly.

– Partial reduction incorporation, which is a more limited variation of (Scott and
Johnstone, 2005). Some reductions are resolved statically, making it no longer nec-
essary to traverse susp tasks in order to resume suspended tasks.

– Token-level disambiguation. Keywords, identifiers and different operators are dis-
ambiguated at character-level without requiring reject reductions used in SGLR
parsers (Brand et al., 2002).

– Just-in-time compilation. Grammar MIRs are translated into machine code during
parser execution with the help of LLVM library (ORC JIT).

Then, ANSI C and Rust grammars for north were implemented:

– ANSI C is a widely used language both in practise and in parser implementation
comparisons. The ANSI C grammar for north does not disambiguate identifiers
and type names. As a result statements like a * b; are parsed ambiguously both
as declarations and expressions.

– Rust was selected as second test language, because its grammar is significantly
larger than ANSI C and it contains less ambiguities.

The following parser implementations were selected for comparison:

– north. It’s the scannerless parsing method described in this paper.
– flex + bison. bison is one of the most commonly used LALR(1) parser gen-

erators. Because bison is a non-scannerless parser, a flex lexer generator was
used in conjunction.

– flex + yaep. yaep is Yet Another Earley Parser, which is one of the very few
Earley parser implementations available. It is also a token-based parser so flex
lexer was used in conjunction.

– dparser. It’s a scannerless implementation of GLR parser (Tomita, 1985).
– syn. It’s a library/parser designed for parsing Rust code. It uses it’s own internal

lexer.

The following input files were used for comparison:

– ansic_470k.c. This file was taken from yaep test suite. It’s a 14.8 MB file that
contains ≈475000 lines of preprocessed C code. The file was created by combin-
ing the source code of entire gcc 4.0 compiler into one file, preprocessing it, and
removing any non-ANSI C constructs from it (such as gcc extensions).

– rust_650k.rs. This file was obtained by concatenating all files from rustc
compiler repository (excluding the test suite) and performing minor adjustments
to it, so the resulting file is a syntactically valid Rust program. The file is 22.3 MB
in size and contains ≈650000 lines of code, including whitespace and comments.

Parsing with Scannerless Earley Virtual Machines 187

4.2 Test environment

The test results described in this chapter were obtained on machine with the following
specifications:

– Processor: Intel i7-3930k.
– Memory: 16 GB of DDR3 RAM, 1333 MHz.
– Operating system: Ubuntu 18.04.1 LTS.
– Linux kernel: 4.15.0-36.
– GCC: version 7.3.0.
– rustc: version 1.30.0-nightly (90d36fb59 2018-09-13).
– flex: version 2.6.4.
– bison: version 3.0.4.
– dparser: version 1.30.
– yaep: obtained from GitHub with revision 1f19d4f5 (WEB, b).

4.3 Test results

Table 2: Table showing the median times it takes to parse sample inputs

Parser Language N IQR % Outliers Median time (s)
bison ANSI C 10 0.0008 20.0 0.4974
dparser ANSI C 10 0.0104 20.0 16.1007
north ANSI C 10 0.0162 0.0 4.6132
yaep ANSI C 10 0.0737 0.0 1.7231

north Rust 10 0.0197 0.0 6.3258
syn Rust 10 0.0346 0.0 5.5434

The performance comparison results are shown in table 2.
The fastest ANSI C parser (from the ones tested) is bison, but that’s not surprising,

as this parsing method is quite deterministic and restricted to only LALR(1) grammars
(bison does support GLR grammars as well, but LALR(1) grammar was used to parse
ANSI C). yaep is 2nd and is quite a bit slower than bison, but it is also more general
as it’s based on Earley parser. However, it is not scannerless. north is 3rd and is almost
9 times slower than bison, but it’s the fastest both scannerless and generalized parsing
method. Finally, GLR-based scannerless dparser comes last.

Only two parsers were used to compare Rust parsing performance, but that’s be-
cause Rust is a fairly new programming language and not many parsers/grammars for
parsing Rust code exist. syn is a hand-written recursive descent parser that was only
marginally faster than north.

188 Audrius Šaikūnas

4.4 Validity
The reduce threats to internal result validity, the following precautions were taken:

– All benchmarks/tests were run in the same environment with same configuration.
– Each test was executed multiple times, to increase consistency of the results.
– Before running each set of tests, the specific test scenario was warmed-up for at

least 3 seconds to reduce the influence of hardware/software caching and/or dy-
namic CPU frequency policy.

– IQR method was used to identify outliers to detect other unwanted and unforeseen
performance influences that may have happened during execution of the tests.

As for the external validity, the question can be divided into two parts:

– Will the performance of north generalize to other ANSI C and Rust workloads?
– Will the performance of north generalize to other programming languages?

The first question is simpler: the obtained test results should reflect the performance
of parsing other C programs, because the sample inputs for both ANSI C and Rust
should cover the entire grammars of ANSI C and Rust and as such any performance
pitfalls would have been detected already.

To answer the second question, an important observation needs to made: the perfor-
mance of north is primarily influence by two factors:

1. The average recursive depth of the grammar.
2. The amount of ambiguities present in the parse input/grammar.

All parsing methods will be less performant with higher grammar rule depths:
LR parsers, just like SEVM, will need more reductions to parse more deeply nested
grammar rules, recursive descent parsers will require more calls/returns. Furthermore,
SEVM allows grammar designers to slightly reduce the depth of grammars with the use
of abstract grammar rules.

The more important factor for overall north and SEVM performance is the amount
of ambiguities present in the input file/grammar. The grammars of programming lan-
guages are typically designed to contain no ambiguities. If they do exist, it’s because
of special circumstances, like in ANSI C: where the input is highly ambiguous if no
type information is available during parsing. As such, the ANSI C test for north may
be considered a practical worst-case scenario in regards to ambiguities. Therefore, the
observed performance of north should generalize to other programming languages as
well that exhibit similar level of ambiguousness to ANSI C and/or Rust.

5 Conclusions

We have presented a new, scannerless, virtual machine based approach called SEVM for
parsing context-free grammars, which was heavily inspired by the classic Earley parser.
We have described the parsing method and how the input grammars are translated into
medium-level intermediate representation (MIR) that is then used for parsing. We have
also shown an important optimization for this parsing method that merges shared pre-
fixes of grammar rules, which significantly increases the parsing performance. Finally,
we demonstrated a SEVM implementation called north and have shown that it may be
used to parse ANSI C and Rust programs with reasonable performance.

Parsing with Scannerless Earley Virtual Machines 189

Acknowledgements

Thanks to Vilnius University, Institute of Data Science and Digital Technologies for
financing this research.

References

Aycock, J., Horspool, R. (2002). Practical Earley Parsing. Compututer Journal, 620–630.
Brand, M., Scheerder, J., Vinju, J., Visser, E. (2002). Disambiguation Filters for Scannerless

Generalized LR Parsers. Springer Berlin Heidelberg, Berlin, Heidelberg.
Earley, J. (1970). An Efficient Context-free Parsing Algorithm. Commun. ACM, 94–102.
Jim, T., Mandelbaum, Y., Walker, D. (2010). Semantics and Algorithms for Data-dependent

Grammars. Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (2010, Madrid, Spain), POPL ’10, ACM, New York,
United States.

Rabin, M., Scott, D. (1959). Finite Automata and Their Decision Problems. IBM Journal of Re-
search and Development, 114–125.

Scott, E., Johnstone, A. (2005). Generalized Bottom Up Parsers With Reduced Stack Activity.
Comput. J., 565–587.

Stansifer, P., Wand, M. (2011). Parsing Reflective Grammars. Proceedings of the Eleventh Work-
shop on Language Descriptions, Tools and Applications (2011, Saarbrucken, Germany),
LDTA ’11, ACM, New York, United States.

Tomita, M. (1985). Efficient Parsing for Natural Language: A Fast Algorithm for Practical Sys-
tems. Kluwer Academic Publishers, Norwell, MA, USA.

Šaikūnas, A. (2017). Parsing with Earley Virtual Machines. Communication Papers of the 2017
Federated Conference on Computer Science and Information Systems (2017, Prague, Czech
Republic).

WEB (a). Regular Expression Matching: the Virtual Machine Approach (2009). https://
swtch.com/˜rsc/regexp/regexp2.html

WEB (b). Yet Another Earley Parser (2018). https://github.com/vnmakarov/yaep

Received October 21, 2018 , revised March 21, 2019, accepted April 9, 2019

https://swtch.com/~rsc/regexp/regexp2.html
https://swtch.com/~rsc/regexp/regexp2.html
https://github.com/vnmakarov/yaep

	Parsing with Scannerless Earley Virtual Machines
	Introduction
	Scannerless Earley Virtual Machine
	Overview of the parsing process
	SEVM structure
	MIR structure
	Grammar description language
	Matching terminal symbols
	Matching non-terminal symbols
	Matching repetition
	The parsing algorithm
	Obtaining parse forest
	Parsing with constraints

	MIR subset construction optimization
	Overview
	MIR -closures
	MIR subset construction
	Parsing ambiguities

	Evaluation
	Method
	Test environment
	Test results
	Validity

	Conclusions

