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Abstract. There are huge volumes of raw data generated every day. The question is how to store 

these data in order to provide faster data access. The research direction in Big Data projects using 

Hadoop Technology, MapReduce kind of framework and compact data formats shows that two 

data formats (Avro and Parquet) support schema evolution and compression in order to utilize less 

storage space. In this paper, a systematic review of SQL-on-Hadoop by using Avro and Parquet 

has been performed over the past seven years (2010–2016) using publications of conference 

proceedings and journals of IEEEXplore, ACM Digital Library, ScienceDirect. With the help of 

search strategy followed, 152 research papers have been identified out of which 27 (from year 

2013-2016) have been analyzed deeply as relevant papers. At the end, the conclusion has been 

made that direct comparison by compactness and fastness between Avro and Parquet do not exist 

in analyzed scientific articles. 
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1. Introduction 

The amount of data captured by social media, the Internet of Things, enterprises and 

different types of applications is growing exponentially. There are huge volumes of raw 

data every day, but these data do not yield much information until processed. As a result 

of processing, raw data sometimes ends up in a database, which enables the data to 

become accessible for further processing and analysis in a number of different ways.  

Towards distributed and real-time processing of large data sets – the so-called Big 

Data – the traditional computing techniques are becoming insufficient (Chandra et al., 

2012). Hadoop is one of the most common open source Big Data frameworks in the 

industry today, capable of carrying out common Big Data related tasks. There is growing 

business demand for Hadoop technology usage in Big Data analysis such as storage, 

biological data, road, traffic, travel and tourism, telecommunication, enterprise data, 

citizens’ info (Polato et al., 2014). In addition, Hadoop technology is becoming popular 

in such areas as cloud computing, internet data management (storage, load balancing), 

implementing MapReduce algorithms for providing solutions to various problems of 

handling large amount of data, in proposing new models by using HDFS (Sharma et al., 

2014). 

Often raw data are stored in specific text formats, for instance: JSON, CSV, XML, 

etc. These formats allow data to be structured and available for humans to read and edit 

them in most convenient manner. However, storing raw data in a plain text has a 
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significant drawback – there is a disk space needed to store such files. But for Big Data 

cluster powered by Hadoop it is even a bigger problem because of the high replication 

factor of each data block within Hadoop File System – HDFS. For instance, 

recommended HDFS replication factor is 3. That means each raw data block will be 

replicated 3 times across data nodes. Thus it is crucial to select appropriate data format 

that enables HDFS storage space utilization in a more efficient manner according to the 

task defined. Secondly, data storage format may impact the speed of data processing 

with Hadoop tools, like Hive. Several binary data storage formats exist. Some of them 

are RCFile, ORC, Avro, Parquet. These formats are designed for systems that use 

MapReduce kinds of framework. It is a structure that is a systematic combination of 

multiple components including data storage format, data compression, and optimization 

techniques for data reading. 

This article investigates the research direction in Big Data projects using Hadoop 

Technology, MapReduce kind of framework and compact data formats such as Avro and 

Parquet and answers the research questions what are known about the differences in 

performance (query execution time) between compact data formats Avro and Parquet 

and which data format (Avro or Parquet) is more compact? The aim of this article is to 

find scientific articles (indexed in scientific libraries) as scientific evidence that answers 

the question in which format (Avro or Parquet) to store huge volumes of raw data better: 

in order to reduce storage space but at the same time – to speed up data processing. 

There are various researches available in internet that are devoted to this question 

although these articles are mostly commercially supported, not scientific, not based on 

TPC or other kind benchmark, not reliable enough to support the decision about better 

data storage format from compactness and performance point of view. The research task 

is coming basically from business demand. Why Avro and Parquet? The answer on this 

question is given in Section 2. Briefly, both are compact, fast, binary data formats that 

rely on schema. Avro is row-based. Thus there is an assumption that it can perform 

faster with scan queries. But Parquet is column-based data format. Thus there is an 

assumption that it can perform faster with aggregation queries. The task of the literature 

review is to find scientific articles that confirm these assumptions. 

 It is performed as a small-scale literature review. However, it can be considered as a 

complete systematic literature review within the scope of this article, for instance, the 

chosen search strategy and the selected time period. 

The systematic review is carried out by identification of research, selection of studies 

by various authors, deciding upon the inclusion and exclusion criteria and analyzing the 

amount of publications done in this domain during the time period of year 2010 to 2016. 

This paper limits its scope to publications done in IEEE Digital Library (IEEE Xplore), 

ACM Digital Library and ScienceDirect. 

2. Background 

The Hadoop Technology is commonly being used to manage Big Data projects. 

Hadoop is now the de facto standard for storing and processing big data, not only for 

unstructured data but also for some structured data (Chen et al., 2014). The Hadoop 

Distributed File System (HDFS) is designed to reliably store very large data sets, and to 

stream those data sets at high bandwidth to user applications (Shvachko et al., 2010). As 

a result, providing SQL analysis functionality to the big data resided in HDFS becomes 

more and more important. Hive is a pioneer system that supports SQL-like analysis to 
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the data in HDFS (Chen et al., 2014). This review focuses not only on Hive. Other SQL-

on-Hadoop systems such as HortonWorks Stinger or Cloudera Impala are acceptable too, 

if tests and comparisons of the performance are based on queries selected or derived 

from world-renowned benchmarks like TPC-H or TPC-DS. 

There is another sphere of binary data storage format utilization on direct data 

sources. For instance, service data gathering from mobile phones to get specific insights 

of people’s behavior or in order to create other kind of location intelligence reports. 

Assuming that a GPS data packet (timestamp, longitude and latitude) is 100 bytes on 

average and that the smartphone generates it every 8 seconds, quick math calculations 

result in 0.043 MB/h, 1.03 MB/day and 376 MB/year. In 2014 over 1.2 billion 

smartphones were sold (WEB, a). If 1 billion devices produce a GPS data packet every 8 

seconds, it results in 1 PB/day. This means that we need ~1000 disk drives with size 1TB 

in order to store these data. The volume of data is enormous. The question is where and 

how to store these data in order to provide database for faster execution of data queries. 

This is the main rationale for this review. 

The data storage formats mentioned in Introduction section (Text/CSV (WEB, b), 

JSON (WEB, c), Avro (WEB, d), SequenceFile (WEB, e), RCFile (He et al., 2011), 

ORC file (WEB, f), Parquet (WEB, g)) have some advantages and disadvantages. From 

storage space economy point of view only Avro, SequenceFile, RCFile, ORC file and 

Parquet support compression. In addition, Avro and Parquet data format support the 

schema evolution also. This is the main reason why Avro and Parquet has been chosen to 

find scientific articles that investigates the advantages or disadvantages of these compact 

data formats. 

Avro (WEB, d) is a row-based storage format, also described as a data serialization 

system similar to Java Serialization. Avro provides rich data structures, a compact, fast, 

binary data format, a container file to store persistent data, remote procedure call (RPC) 

features. There is not required code generation to read or write data files, or to use or 

implement RPC protocols. Alternative systems include Java Serialization, Thrift 

(WEB, h) and Protocol Buffers (WEB, i) that only work with compile time code 

generation. Furthermore, Avro can provide more optimized runtime performance 

(Palmer et al., 2011).  

Avro relies on schemas. A schema defines the structure of the data and is used in data 

reading and writing process. The data schema is defined with JSON and stored into Avro 

file during data writing process. When Avro data are read, the schema used when writing 

are always present. This allows data to be written with no per-value over-heads.  

Avro is used to save many small files in a single Avro file in HDFS to reduce the 

namenode memory usage because of user-defined patterns and specific data encoded 

into binary sequence and stored into a large containing file (Zhang et al., 2014). 

Parquet (WEB, g) is a column-based storage format, optimized for work with multi 

column datasets. Parquet use cases typically involve working with a subset of those 

columns rather than entire records. One of the most-often cited advantages of columnar 

data organizations is data compression (Stonebraker et al., 2005) and reduced disk I/O 

(Abadi et al., 2009) that improves performance of analytical queries (Floratou et 

al., 2014). Data compression algorithms perform better on data with low information 

entropy (high data value locality). Thus the system achieves the I/O performance 

benefits of compression without paying the CPU cost of decompression (Abadi et 

al., 2009). The layout of Parquet data files is optimized for queries that process large 

volumes of data. 
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Information stated ahead is known part of compact data formats, such as Avro and 

Parquet. Thus, Avro and Parquet choice for the deeper investigation is based on the 

necessity to investigate these formats by using various queries (scan, aggregation and 

join) from a world-renowned benchmark like TPC-H and prove the assumption that 

Avro supported row-oriented data access should provide better performance on scan 

queries, e.g., when all columns are of interest for the processing, but Parquet format as a 

counterpart should provide better performance on column-oriented queries, e.g. when 

only a specific set of those is selected. 

Considering that short background information (the rationale for the survey) is given 

in this and introduction section, the next section of the paper includes literature review. 

Section III discusses the research methodology used to extract the relevant data for 

systematic review. Section IV comprises the result set, followed by the conclusion in 

Section V. 

3. Research methodology 

This study has been undertaken as a systematic literature review (SLR) based upon 

guidelines established for the Software Engineering domain (Kitchenham and Charters, 

2007). In this section, the protocol used in the SLR has been provided, the research 

question and its components have been specified, and the requirements regarding the 

source and primary study selection, the evidence collection and the method of synthesis 

of such evidence have been established. The results regarding each step are provided 

alongside the protocol, except summary, which is addressed in Section 4. 

In accordance with guidelines (Kitchenham and Charters, 2007), the following steps 

have been performed in order to conduct this research: 

• Defining the objective and the research question that the review is intended to 

answer. 

• Defining the search strategy to be used to do primary studies including looking for 

terms and resources to be searched. 

• Selection of primary studies: Individual studies contributing to a systematic review 

are called primary studies. The goal of this step is to find out numberless primary 

studies related to the selected domain. 

• Piloting the selection of criteria on a subset of primary studies in order to 

determine which studies are relevant or which should be excluded from a 

systematic review. There are several inclusion/exclusion criteria to be considered: 

o relevance of the topic; 

o relevance of the subjects; 

o context; 

o publication venue. 

In addition, it is important to develop a quality checklist in order to assess the 

individual studies. 

• Assessment of quality. In order to evaluate the quality of the collected data, it is 

necessary to determine the strength of each individual research paper and give 

more detailed inclusion/exclusion criteria. Previously developed and filled in 

quality checklist can help to assess the quality of each individual research paper. 

• Extraction of relevant data. It is important to define how the information required 

from each primary study could be obtained. 
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• Data synthesis. It is necessary to extract data from the primary studies in order to 

answer the research question, tabulate data in a consistent manner and determine 

whether the formulated results from the extracted data are consistent with each 

other or not. 

3.1. Objective and research questions 

In context of the information given in Introduction and Background section of this 

article, it is crucial to select an appropriate data format that reduces HDFS storage space 

and improves the speed of data processing with Hadoop tools, like Hive. The objective 

of this work is to perform systematic literature review in order to answer the research 

questions:  

RQ.1: What are the differences in performance (query execution time) between 

compact data formats Avro and Parquet? 

RQ.2: Which data format (Avro or Parquet) is more compact? 

3.2. Search strategy 

To answer the research question, the search strategy has been defined and an 

extensive search for research papers has been conducted. During data retrieval, the 

boundaries of the systematic review have been set. The search strategy includes 

definition of the search scope by research keywords, search strings and sources. 

Research keywords have been chosen based on the research question. The synonyms 

to the keywords have not been considered because the term like “Hadoop” is unique 

general term that can only be supplemented with related terms such as “Big data”, 

“HDFS”, “MapReduce”, “Hive” or specific data formats, like “RCFile”, “SequenceFile”, 

“ORC”, “Avro”, “Parquet” etc. The term “Hadoop” has been predefined based on the 

names defined by the Hadoop developers in the Apache Hadoop website. The final 

search string has been based on the experience from the pilot searches starting from a 

broadest search by the term “Hadoop” when IEEEXplore Digital Library’s Full Text & 

Metadata search results in 6,348 articles, and ending by a narrow search by the term 

“RCFile” when only 4 results have been returned. Sometimes search strings have to be 

adapted according to the specific needs of digital libraries, but it is not necessary in this 

case. The search string used to obtain the initial results of this review consists of a 

Boolean expression: 

((Hadoop OR HDFS) AND (Avro OR Parquet)) 

The operator OR has been used in Boolean expression in order to extend the list of 

results and retrieve more articles where Avro or Parquet data format is mentioned 

independently from each other. The same approach has been applied for terms Hadoop 

and HDFS, because in the context of data compactness and storage some authors, for 

instance (Zhang et al., 2014), are using the term HDFS instead of Hadoop. 

The criteria used to select sources of studies have been defined as follows: 

• Must have web search mechanism; 

• Search mechanisms must allow customized searches by title and abstract 

(preferable – full text); 

• Must support the search using Boolean expressions; 
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• The abstract of paper should be available for free. The abstract unavailability is 

the main reason why Springer Link has not been chosen as acceptable source 

during the first step (selection of primary studies). Therefore this review can be 

extended in direction to cover studies from Springer Link. 

• Full articles must be available for download using available contracts between 

University of Latvia and the digital library. Google Scholar can also be 

acceptable; 

• The digital libraries should index papers on the Big Data topic written in 

English. Thus, the search strategy limits the search to the papers written in 

English. 

With the search string defined, the following digital libraries have been chosen as 

sources: 

• IEEEXplore Digital Library  

• ACM Digital Library 

• ScienceDirect 

There are two additional search criteria: items and the publication period. The 

searched items are limited to Journal articles and conference papers, but the publication 

period is set from year 2010 till 2016, covering seven year period when the most active 

time of the Hadoop development was (Polato et al., 2014). 

3.3. Selection of primary studies 

The search query presented in Section 3.2. has been used to retrieve the candidate 

articles from the digital library systems in the time period of 2010-2016. As shown in 

Fig. 2, the first initial step is based on it. 

Search in digital libraries results in total 152 candidate papers: 133 from IEEE, only 

1 from ACM, and 18 from ScienceDirect. As shown in Table 1 and Fig. 1, Hadoop 

Technology has drawn interest of researchers in the past seven years.  
 

Table 1. Search results 
 

Year 
Digital Library 

Total 
IEEE ACM ScienceDirect 

2010 1  1 2 

2011 1  1 2 

2012 7   7 

2013 10  2 12 

2014 21 1 5 27 

2015 38  6 44 

2016 55  3 58 

Total 133 1 18 152 

Including 

deeply analyzed  
22 1 4 27 

The graph shown in Fig. 1 is used in order to better visualize the trend of research 

articles about Hadoop Technology and compact data formats in the past seven years. As 

shown in Fig. 1 the number of publications of research papers in conference 

proceedings, journals and magazines has significantly increased from the year 2010 to 

2016. 
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Fig. 1. Importance of topic by years 

In the first step, the search results from all digital libraries have been gathered by 

using citations download or export function. Thus, search results have been obtained in 

CSV or other delimiter separated format and imported in Excel. Subsequently, the results 

from all 3 digital libraries have to be summarized in one format sheet where common 

data fields have been defined. All the relevant studies used for this review are presented 

in Excel, available at Dropbox (WEB, j). Several parameters have been defined for 

future analysis and documented for each retrieved article in the summary sheet: 

• Document Title 

• Authors 

• Year 

• Abstract 

• URL 

• Link to PDF 

• Keywords 

• Article Citation Count 

• Patent Citation Count 

• Reference Count 

• Source (IEEE, ACM or ScienceDirect) 

• Number of pages 

• Journal Name if Journal article 

• Country 
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Fig. 2. Article selection process 

In the second step, Excel macro functionality has been developed in order to perform 

faster screening and abstract text zooming from delimiter separated metadata. Then, the 

title, keywords and abstract of all papers have been reviewed. As a result, only 141 

papers have been left as relevant. Two from 11 skipped papers have been recognized as 

irrelevant because the term “Parquet” has been used in the context of wood, but the 

search by term “HDFS” has not been performed precisely, e.g., it has been applied to 

HDF surface and letter “S” has been ignored in ScienceDirect search. Although 

presented in different conferences, other two papers (Tsai et al., 2014a) and (Tsai et 

al., 2014b) have been recognized as very similar and devoted to NoSQL topic. 

In the third step, all remaining 141 papers have to be analyzed individually to 

confirm the relevance in the context of the review. To select or discard papers, inclusion 

and exclusion criteria have been defined as follows. The abstract, introduction and 

conclusions of the paper should have something about such topics as storage space 

utilization, HIVE, SQL, HDFS, data formats (Avro or Parquet), compactness 

measurements, performance measurement, queries. The checklist regarding these 

N=152

Step 1

Execute the search query in the all 
sources, gathering the results

N=141

Step 2

Exclude duplicating and irrelevant 
papers by reviewing title, keywords and 

abstract of each paper

N=41

Step 3

Exclude irrelevant papers by analyzing 
introduction and conclusions

N=27

Step 4

Exclude irrelevant papers by reading 
and analyzing full text
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selection criteria has been developed by supplementing previously created Excel. 

Information about the publication venue (country) has been analyzed in this step as well. 

In the fourth step, a full text reading has been performed for the remaining 41 article. 

The quality checklist has been created and filled in this step. The full text of articles has 

been found by using Google Scholar. 

3.4. The assessment of relevance and data synthesis 

Table 1 and Fig. 1 depict data synthesis from the year 2010 to 2016 respectively. It 

can be clearly seen that the number of selected studies has increased in past seven years. 

There are 2 studies in 2010, 2 in 2011, 7 in 2012, 12 in 2013, 27 in 2014, 44 in 2015 and 

58 in 2016. After applying the selection criteria, only 27 papers have been selected for 

data extraction and analysis: 1 study in 2013, 3 in 2014, 13 in 2015 and 10 in 2016.  
 

Table 2. Relevance checklist for selected primary studies 

 

Identi-

fier 
Reference 

Avro 

ana-
lyzed 

Par-
quet 

ana-

lyzed 

Com

pact-

ness 
mea-

sured 

SQL 

que-

ries 
exe-

cuted 

TPC 
bench-

mark 

used 

Amount 

of cita-

tions 

[PS1] (Biookaghazadeh et al., 2015)  x  x  1 

[PS2] (Cejka et al., 2015)  x  x x  4 

[PS3] (Yan and Yuan 2015)  x  x x 0 

[PS4] (Choi et al., 2015)  x  x x 0 

[PS5] (Luckow et al., 2015)  x  x x 8 

[PS6] (Zhang et al., 2014) x  x   7 

[PS7] (Mammo et al., 2015) x   x  2 

[PS8] (Grover et al., 2015)  x  x  4 

[PS9] (Dong et al., 2015) x  x   2 

[PS10] (Zhang et al., 2013) x   x  0 

[PS11] (Zhou et al., 2015)   x  x x 0 

[PS12] (Haynes et al., 2015)  x  x  1 

[PS13] (Pirzadeh et al., 2015)  x  x x 1 

[PS14] (Floratou et al., 2014) partly x  x x 62 

[PS15] (Son et al., 2015) x   x x 1 

[PS16] (Tapiador et al., 2014) partly x x x  11 

[PS17] (Kilias et al., 2015)  x x x  2 

[PS18] (Wullink et al., 2016)  x x x  9 

[PS19] (Li et al., 2016)  x x x  0 

[PS20] (Xu et al., 2016)  x  x  0 

[PS21] (Begoli et al., 2016)  x x x  4 

[PS22] (Liu Yue et al., 2016)  x  x x 0 

[PS23] (Liu Jun et al., 2016)  x  x x 0 

[PS24] (Wullink et al., 2016)  x  x  2 

[PS25] (Giannakouris et al., 2016)  x  x x 0 

[PS26] (Mehmood et al., 2016)  x x x x 0 

[PS27] (Tummalapalli et al., 2016) x   x  1 

The selection criteria are based on the assessment of the quality performed with the 

help of quality checklist. As shown in Table 2, the relevance criteria are based on the 

research questions, e.g., is the article about Avro, Parquet or both formats, provide 
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comparison by compactness or the performance based on queries selected or derived 

from the world-renowned benchmarks like TPC-H or TPC-DS (as indirect quality 

criteria). As shown in Table 2, only 11 studies are based on world-renowned benchmark 

like TPC-H or TPC-DS. Most of all selected primary studies (10) are originated in the 

USA. The second place is taken by China (7) but the remaining articles (10) are 

originated in the Germany, Greece, India, Ireland, Korea, Netherlands, Pakistan and 

Spain. 

3.5. Analytics and conclusions 

Why have the selected articles been considered as relevant or excluded from future 

analysis and final conclusions? In order to answer this question, the short insight of each 

article is useful. 

Biookaghazadeh et al. (2015) introduces a self-describing data format NetCDF that is 

not supported by existing big-data systems. In this article, four type queries are defined 

and executed on the raw storage format CSV and NetCDF. The experiment results 

obtained from typical queries on a geoscience dataset show that the introduced approach 

substantially outperforms the traditional CSV-based approach. The authors mention only 

Parquet format in context of the need to improve scientific data formats such as NetCDF 

and HDF for big-data systems. 

Cejka et al. (2015) from Siemens AG company compares file size of four different 

formats: Java, Protocol Buffers, Thrift and Avro. Avro’s results show that it is much 

slower in write speed, however much faster in read speed than Protocol Buffers and 

Thrift. The file compression in Apache Avro is best. In order to evaluate the time of the 

retrieval of entries, the author’s defined benchmark is used to retrieve data from such 

databases as Storacle, H2, MongoDB. Parquet format is not analyzed in this paper. 

Yan and Yuan (2015) build another TPC-DS benchmark by removing columnar 

optimization, they name it TPC-DS2, optimize the resource utilization, and maintain 

fairness among different types of queries. The authors present a price-based algorithm 

which achieves optimization objective by implementing algorithm in the open source 

Impala system and conducting a set of experiments in a clustering environment using the 

TPCDS workload. Experimental results show that coordinated resource management 

solution can increase the aggregate utility by at least 15.4% compared with simple fair 

resource share mechanism, and 63.5% compared with the FIFO resource management 

mechanism. This work demonstrates significant advantage of Parquet format. Avro 

format is not mentioned in this paper. 

Choi et al. (2015) compares the CSV file format and Parquet file format via 

MicroBricks and x86 clusters. The authors carry out the TPC-H benchmark by means of 

an open source distributed SQL engine in Hadoop in both architectures. The 

experimental results are promising for the MicroBricks computing, and the results show 

that the query response times of the MicroBricks computing architecture outperforms 

those of commodity cluster without hurting the innate advantages of the MicroBricks 

cluster architecture. Avro format is not analyzed in this paper. 

Luckow et al. (2016) compares different queries derived from TPC-DS and TPC-HS 

benchmarks and executed on Hive/Text, Hive/ORC, Hive/Parquet, Spark/ORC, 

Spark/Parquet. Hive/Parquet shows better execution time than Spark/Parquet. Select, 

aggregate and join queries are executed on a comparable infrastructure Hive/Spark 

versus RDBMS. Generally, the RDBMS can outperform Hive and Spark – however, 

both deliver a solid performance at a lower cost. But Avro format is not analyzed here. 
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Zhang Shuo et al. (2014) compares raw data storage formats versus Avro and 

propose an original solution to store, read and write different small files on HDFS. 

However, there is no direct comparison of different data formats and Parquet is not 

presented there. It is worth mentioning that authors select Avro as a target binary data 

format and demonstrate its efficiency in both read and write operations. 

Mammo and Srividya (2015) propose a Presto-based architecture, Presto-RDF that 

can be used to store and process big RDF data and SPARQL to SQL compiler. The 

comparative analysis of the performance of Presto (distributed SQL query engine) in 

processing big RDF data against Apache Hive has been done. However, Parquet format 

is not mentioned in this work and Avro is only mentioned in the context of future work, 

because the RDF data is stored as a text file, which is not optimal. This work can be 

extended to test using RCFILE, ORC, AVRO formats, which are better optimized than 

the text file. 

Grover et al. (2015) focuses on benchmarking multiple SQL-like big data 

technologies over Hadoop based distributed file system (HDFS) for Study Data 

Tabulation Model (SDTM) used in clinical trial databases for improving the efficiency 

of research in clinical trials. The benchmark proposed in this paper provides an overview 

of the capabilities of SQL-on-Hadoop platforms such as Hive, Presto, Drill and Spark. 

The authors mention format Avro and Parquet, but they do not analyze these formats in 

any kind of comparison. Only Parquet format is mentioned in the future work section as 

lightweight and fast with a columnar layout, hence it can significantly boost IO 

performance. 

Dong et al. (2015) introduces the Record-aware Compression (RaC) scheme that 

makes the compressed contents splittable, uses a lightweight Hadoop Record Reader and 

preserves the parallelism and data locality properties as much as possible. In general, 

RaC can be used with other analytic platforms such as Spark and higher level 

abstractions of MapReduce such as Hive. In the evaluation, the authors show that using 

RaC can greatly reduce data loading time and the required system memory. More 

importantly, the authors observe that the time spent on decompressing data in memory is 

trivial compared to the time required for loading data from persistent storage to memory. 

The experimental results lead the authors to believe that content-aware and data-specific 

compression is very promising in big data processing and analysis. However, there is no 

direct comparison of Avro and Parquet data format in the SQL point of view. 

Zhang Zhen'an et al. (2013) introduce Alovera, a fast stream processing system for 

large-scale data. Alovera can easily serialize the records to HDFS by using Avro. The 

authors prove that the record-oriented data need nearly half of the time to be 

uncompressed while Avro is used to serialize the data stored in columnar format, and it 

is efficient to de-serialize the data. Parquet format is not analyzed in this paper. 

Zhou et al. (2015) explore a Workload Aware Column Order solution, WACO, to 

boost the scan operator in a wide table. Although this article does not investigate Avro, 

the authors implement WACO solution on Parquet data format on top of Hadoop 2.0. 

The authors conduct extensive experiments of the real-world TPC-H benchmark and 

SDSS dataset for simulating a wide table to demonstrate the superiority of our solution. 

The experiment results show that this approach is 2x faster than the state-of-the-art. 

Haynes et al. (2015) introduces Terra Populus that acts as the bridge between big 

data sources and researchers. Researchers are provided with convenient web applications 

that allow them to access, analyze, and tabulate different datasets under a common 

platform. Terra Populus’ Tabulator application employs Parquet on Spark to build 

dynamic queries for analyzing large population survey data. The authors recognize that 
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Parquet allows greater compression per data type. Parquet usage gives a high 

compression ratio while still allowing for fast data fetching. However Avro format is not 

analyzed here. 

Pirzadeh et al. (2015) reports on an evaluation of four representative Big Data 

systems (such as MongoDB, Hive, AsterixDB, and a commercial parallel shared-nothing 

relational database system) using a micro-benchmark called BigFUN. Parquet is used in 

benchmarking while Avro is not mentioned at all. 

Floratou et al. (2014) compares three analytical job execution environments available 

in Hadoop ecosystem. Hive on MapReduce, Hive on Tez and Impala have been analyzed 

here by using a world-renowned benchmark like TPC-H. As a result, the authors confirm 

that Impala has better performance versus Hive (both versions). The authors conduct a 

detailed analysis of Impala and Hive using TPC-H data, stored as text, Parquet and ORC 

file formats. This is the most cited article from all deeply analyzed studies. Although, the 

authors compare ORC versus Parquet, the ORC format cannot be considered as 

completely row-based format like Avro. This can be considered as good article for ORC 

and Parquet format comparison, but not for Avro versus Parquet.  

Son et al. (2015) proposes a novel column-store method called SSFile for Hadoop-

based distributed systems. SSFile increases the actual amount of data processed per task 

and supports representative columnar execution techniques for efficient query 

processing. Through experiments authors show that SSFile significantly improves the 

performance of distributed processing. Avro schema is used in SSFile creating and 

benchmarking while Parquet format is not mentioned at all. Furthermore, the authors use 

only a few queries from the TPC-H benchmarking and do not argument this choice. 

Tapiador et al. (2014) compares the data set size for different compression and 

format approaches like CSV(Row), Plain(Row), Snappy(Row), GBIN(Row), 

Snappy(Column), GBIN(Column). Google Snappy codec gives a much better result as 

the decompression is faster than Deflate (GBIN). It takes half of the time to process the 

histograms (50%) and the extra size occupied on disk is only around 23%. This confirms 

the suitability of Snappy codec for data to be stored in HDFS and later on analyzed by 

Hadoop MapReduce work flows. Although this article gives an answer to the question 

about compactness between different compression and format approaches like 

CSV(Row), Plain(Row), Snappy(Row), GBIN(Row), Snappy(Column), GBIN(Column), 

it does not compare data format Avro versus Parquet from compactness point of view or 

in another kind of comparison, for instance, SQL query execution time. The data storage 

model approaching performance comparison does not give a transparent view of how it 

is obtained. 

Kilias et al. (2015) proposes INDREX, a system that provides a single and 

comprehensive view of the whole process combining both relation extraction and later 

exploitation with SQL. The authors use Parquet data format to store data in HDFS and 

observe a compression ratio of a nearly 10x factor: The data size in the Parquet.io file 

format is reduced from 107GB to roughly 10GB. The authors do not analyze Parquet 

format in the SQL kind of comparison. Avro format is not analyzed here at all. 

Wullink et al. (2016) presents the design of ENTRADA, a high-performance data 

streaming warehouse that enables researchers and operators to analyze vast amounts of 

network traffic and measurement data within interactive response times. ENTRADA 

uses off-the shelf Impala query engine and Parquet file format based on Google’s 

Dremel to achieve high performance. There are highlighted the advantages of the 

Parquet as an efficient columnar storage format for data storage, which differs from 

traditional row-based storage in the way the data elements are ordered. However, the 
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Parquet format is not analyzed in the SQL kind of comparison or compared with row-

based Avro format. 

Li et al. (2016) gives an overview of Impala’s architecture, performance optimization 

possibilities and conducts a set of experiments in big data analysis system based on 

Impala to verify the effect of optimization. The performed data compression and queries 

show that Parquet with snappy compression consistently outperforms by up to 3.7x the 

text format. Avro format is not analyzed here. 

Xu et al. (2016) compares the use of HIVE in conjunction with the MapReduce and 

Spark programming frameworks, analyzes its performance using different data storage 

formats, and exemplifies potential use cases to facilitate data analysis of connected 

vehicles. The authors recognize that the Parquet reduce the space required to store 

information and introduce limitations on how the data can be split and the number of 

mappers and reducers that may be used. Parquet is used in benchmarking together with 

ORC while Avro is not used at all. 

Begoli et al. (2016) presents a service platform for schema-less exploration of data 

and discusses the key features and software architecture of the platform, the underlying 

core components (Apache Parquet, Drill, the web services server), the runtime profiles 

and performance characteristics of the platform. The Parquet is used in performance 

evolution while Avro is not used there. 

Liu Yue et al. (2016) compares the data filtering performance of the indexes such as 

Compact Index, Aggregate Index, Bitmap Index, DGFIndex and the index in ORC file 

with different columnar storage formats (ORC, RCFile and Parquet) by conducting 

comprehensive experiments using uniform and skew TPC-H data sets and various multi-

dimensional queries. The authors suggest the best practices how to improve multi-

dimensional queries in Hive under different conditions. The row-based storage format 

like Avro is not analyzed here. 

Liu Jun et al. (2016) proposes a novel Impala simulation framework to help IT 

professionals to understand its performance behavior. The Impala simulator has been 

validated against various software and hardware configurations, using the well-known 

TPC-DS benchmark. The Parquet is used for performance validation as default format 

used by Impala while Avro is not used there. 

Giannakouris et al. (2016) presents MuSQLE, a system for SQL-based analytics over 

multi-engine environments. The detailed experimental evaluation, integrating 

PostgreSQL, MemSQL and SparkSQL under MuSQLE, demonstrates system’s ability to 

accurately decide on the most suitable execution engine. MuSQLE can provide speedups 

of up to 1 order of magnitude for TPCH queries, leveraging different engines for the 

execution of individual query parts. However, the authors do not analyze compact data 

formats in any kind of comparison. 

Mehmood et al. (2016) analyzes the performance of three SQL-on-Hadoop systems 

(Hive, Impala and Tajo) by applying TPC-H benchmarks. The experimentation is done 

with two major and largely used file formats for columnar databases (ORC and Parquet). 

The results show that Impala outperforms Hive and Tajo by 5X to 10X when the 

workload dataset fits in its memory. The row-based storage format like Avro is not 

analyzed here. 

Tummalapalli et al. (2016) presents the processing time of Impala, Hive, Pig and 

MySQL Cluster on a simple data model with simple queries while the data is growing. 

Evaluation results indicates that Impala achieves acceptable performance for some data 

analysis and processing tasks even compared with Hive and Pig and MySql cluster. The 

authors do not analyze Avro and Parquet storage file formats in any kind of comparison. 
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4. Results 

This section presents the results of analysis of the relevant studies and answer to the 

research question. Although the field is in its earliest stages, there is clear evidence of 

the increasing interest focused on big data studies, Hadoop Technology, HDFS and 

compact, fast, binary data formats. The aim to give a synthesized overview on the trend 

of the research publications of Hadoop technology and answer the research question is 

reached by detailed analysis of the relevant studies. 

The analysis of extracted data and initially retrieved studies show that Hadoop 

Technology and compact data formats have drawn interest of various researchers in the 

past seven years. As shown in Fig. 1, the number of publications of research papers in 

conference proceedings, journals and magazines has significantly increased from the 

year 2010 to 2016. 

How about an answer to the research questions? 

RQ.1: What are the differences in performance (query execution time) between 

compact data formats Avro and Parquet? 

RQ.2: Which data format (Avro or Parquet) is more compact? 

As shown in Table 2, only 2 papers ([PS14] and [PS16]) satisfy requirements partly - 

have a focus on row-based and column-based formats, although the row-based format is 

not exactly Avro, but 11 papers use TPC benchmark (as indirect quality criteria) for one 

of the formats, mostly Parquet. This might be because of row-based (Avro) and column-

based (Parquet) data format specifics limiting comparison.  

There is a good comparison of compactness and performance of two formats 

(Hortonworks’ and Microsoft’s proposed ORC (Optimized Row Columnar) file format, 

which is the next generation of RCFile, and Impala’s promoted Parquet file format, 

which is a columnar format inspired by Dremel’s storage format) in the first paper 

([PS14]). The 1TB data compression results show that snappy compression provides 

slightly better query performance than zlib and gzip, for the TPCH workload, on ORC 

and Parquet file formats. For this reason, the authors only report results with snappy 

compression in both Hive and Impala. If the file format Avro to be replaced with ORC in 

RQ.2, the answer on this question could be that Impala Parquet format is 1,29x compact 

than Hive-MR ORC format. By applying snappy compression Impala Parquet-Snappy 

format is 1,07x compact than Hive-MR ORC-Snappy format. By using Hive-Tez system 

instead of Hive-MR the difference between Parquet and ORC format is even smaller. As 

for performance, this paper ([PS14]) provides the ratio between Hive-Tez’s response 

time over Impala’s response time for the snappy compressed ORC file and the snappy 

compressed Parquet format also. The results show that Impala Parquet-Snappy format is 

4,2x faster than Hive-MR ORC-Snappy format in average by analyzing 22 TPC-H query 

execution time. However, this paper ([PS14]) does not provide answer on both research 

questions about the differences in performance and compactness by analyzing Parquet 

versus Avro. 

The second paper ([PS16]) does not compare file formats from performance (query 

execution time) point of view but it contains a valuable answer to the second research 

question about compactness as there are compared different compression and format 

approaches like CSV(Row), Plain(Row), Snappy(Row), GBIN(Row), Snappy(Column), 

GBIN(Column). The results show that Snappy (Column) is 1,03x compact than Snappy 

(Row). As for GBIN compression approach, the GBIN (Column) is 1.16x compact than 

GBIN(Row), whereas GBIN (Column) versus Snappy (Column) is 1,38x compact. 
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However, Google Snappy codec gives a much better result as the decompression is faster 

than Deflate (GBIN). In the light of these observations, it can be concluded that Snappy 

(Column) format is better, although the more direct comparison including Snappy (Avro) 

could be advisable for new research. 

In summary, the first paper [PS14] provides indirect answer on RQ.1 about 

performance: if Impala Parquet-Snappy format is 4,2x faster than Hive-MR ORC-

Snappy format in average then there is a high probability that Parquet format is better 

than Avro. If Impala Parquet format is 1,29x compact than Hive-MR ORC format then 

the answer on RQ.2 about compactness could be that Parquet is more compact than 

Avro. However, these are only an assumptions, because these papers does not provide 

direct comparison with Avro and thereby – precise answer on question how much times 

Parquet is faster and compact than Avro. 

Other papers do not provide clear and reliable answer to the research questions at all. 

Most of 27 papers are addressed only to one format (Avro or Parquet), but not to both. 

Thereby, in order to completely and precisely answer the both research questions 

there is a need to perform an experiment similar to the first paper ([PS14]) by adding 

Avro and classifying queries at least in two categories (scan and aggregation queries) in 

order to highlight row-based and column-based binary file format advantages 

respectively.  

5. Final conclusions 

In this section, far from an exhaustive overview, some of the final conclusions are 

given to prevent recurrence. 

There is a gap and need for additional experiments and studies in order to answer the 

research question about Parquet and Avro format more precisely. All 27 studies are not 

containing direct focus on comparing two binary data storage formats – Parquet and 

Avro because of both design specifics. Parquet as stated in the official documentation 

(WEB, g) is a column-oriented data storage format. Thus, it should provide better 

performance on column-oriented queries, e.g., when only a specific set of those is 

selected. As a counterpart, Avro format is designed for row-oriented data access, e.g., 

when all columns are the interest of processing. Most of all deeply analyzed studies have 

a focus on one of the formats, mostly Parquet. This might be because of row-based 

(Avro) and column-based (Parquet) data format specifics limiting comparison. However, 

it does not satisfy business demand for knowledge about both data format comparison. 

This is the gap for the future research. 

In this review, 27 papers have been studied in order to evidence Hadoop Technology 

popularity and fast, compact, binary data format development necessity. A high diversity 

of Hadoop Technologies and used data formats has been noticed. It was a time 

consuming process to classify all studies, extract relevant information, assess validity 

and reliability, develop checklists and make conclusions at the end. There are several 

scientific articles that are devoted to performance analyze of SQL-on-Hadoop systems 

like Hive, Impala, Tajo, Spark, even by applying TPC-H benchmarks. However, these 

papers do not provide clear and reliable answer to the research question about 

differences in performance (query execution time) between compact data formats Avro 

and Parquet. Most of 27 papers are addressed only to one format (Avro or Parquet), but 

not to both. In summary, there is no evidence in the analyzed scientific articles that could 

strictly confirm an assumption that Avro can perform faster with scan queries but 
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Parquet - with aggregation queries. The executed queries have not been classified as scan 

or aggregation in the deeply analyzed scientific articles where the TPC benchmark is 

used. It would be useful to introduce such a classification in the future research with file 

formats and SQL-on-Hadoop systems. 
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