
Baltic J. Modern Computing, Vol. 5 (2017), No. 2, 164-182 

http://dx.doi.org/10.22364/bjmc.2017.5.2.02 

Computer Science High School Curriculum in Israel 

and Lithuania – Comparison and Teachers’ Views 

Tamar BENAYA
1
, Ela ZUR

1
,  

Valentina DAGIENĖ
2
, Gabrielė STUPURIENĖ

2
 

 

1The Open University of Israel, Faculty of Mathematics and Computer Science 
2Vilnius University, Institute of Mathematics and Informatics 

 
tamar@openu.ac.il, ela@openu.ac.il 

valentina.dagiene@mii.vu.lt, gabriele.stupuriene@mii.vu.lt 

 

Abstract Computer Science (CS) education in high schools is entering the fifth decade of its 

existence. Israel is one of the first countries which started to offer CS courses in high schools in 

the middle of the 1970s. Many European countries joined this process a decade later – Lithuania is 

among them. Both countries put a lot of effort in developing CS curricula and establishing 

assessment examinations. Nowadays there has been considerable activities surrounding CS 

education on all levels therefore we suggest to take a look at the experience of these two countries. 

In this paper we describe the CS curriculum for high schools in both countries, including a 

description of the final exams, some statistics regarding students' participation and achievements 

as well as exam evaluation. We then display the results of a survey, conducted among high-school 

teachers in both countries regarding teachers' attitudes towards the CS curriculum. We sum up 

with a discussion comparing curricula and teachers' attitudes in both countries and conclude with 

some insights from the survey.  

Keywords Computer Science Education, K-12, Computer Science Curricula. 

1. Introduction 
 

At present, all evidence points to a significant boom in Computer Science (CS) 

education at the high school level. This boom is most clearly manifested in the shifting 

education attention from information technology (IT) to CS (Computing or Informatics 

as it is called in many European countries) and in increasing articles devoted to the 

questions of CS education in schools. 

Education policy makers are becoming inspired by the challenges posed by the CS 

Teacher Association in USA (Seehorn et al., 2011), Computing at School in the UK 

(Computing…, 2012) and the Computing Curricula (Joint IEEE…, 2013). The new 

Computing curriculum in UK puts the subject on an entirely new footing, as the "fourth 

science" at school. It offers new opportunities for professional development for teachers 

and better education for students (Computing…, 2012). 

http://dx.doi.org/10.22364/bjmc.2017.5.2.04


 Computer Science High School Curriculum in Israel and Lithuania  165 
 

So, in the last four decades, there has been considerable activity surrounding CS 

curricula on all levels: beginning with ACM Curriculum Committee on CS (Atchison et 

al., 1968) through Computing Curricula 1991 (Tucker et al., 1991) and up to Computing 

Curricula 2013 (Joint IEEE…, 2013). Notable is the high-school curriculum designed by 

the special ACM task force (Merritt et al., 1994) and in particular the K-12 curriculum 

(Tucker, 2003). The goal of the K-12 curriculum, was to create a 4-level curriculum that 

could be widely disseminated, accessible to every high school student in the US. Its aim 

was to enable every CS student to understand the nature of the field and the place of CS 

in the modern world. Students need to understand that CS combines theoretical 

principles and application skills. They need to be capable of algorithmic thinking and of 

solving problems in other subject areas and in other areas of their lives. The aim of the 

most recent curriculum K–12 Computer Science Framework (2016) is dedicated to 

students who are not just computer users but also computationally literate creators who 

are proficient in the concepts and practices of computer science. 

In light of the recommendations presented above, we can see that different countries 

developed unique curriculums for high school CS education, see for example ACM 

Transactions on Computing Education (TOCE) special issue on Computing Education in 

(K-12) Schools (Tenenberg and McCartney, 2014). Although much had been previously 

written about CS education at schools, we would like to share Israel's and Lithuania's 

long experience in teaching CS at high school.  

2. The High School CS Curriculum 

2.1. The Israeli Case 
 

Teaching CS in Israeli schools was offered since mid-1970s. The current Israeli CS high 

school curriculum was designed in the early 1990s and first implemented in 1995. One 

particular principle underlying the curriculum is the interleaving of theoretical principles 

with application skills. This interleaving notion is specifically termed in the Israeli 

curriculum as the "zipper approach". A detailed description of the program is given in 

(Gal-Ezer et al., 1995; Gal-Ezer and Harel, 1999). 

In Israeli high schools, every student must study at least one subject in depth, in 

addition to general studies which include Mathematics, English, History, Literature etc. 

The highest level of studies is the 5-point (as opposed to 3 or 4-point) program, each 

point representing 90 class hours. CS is one of the subjects that high school students can 

select to study in depth. The CS program starts in 10
th

 or 11
th

 grade depending on the 

high school. The units included in the 5-point program are: 

 Foundation of Computer Science 1 and 2;  

 Second Paradigm or Application – There are several alternatives for the second 

paradigm, such as: logic programming, functional programming or low-level 

programming; and several alternatives for the application area such as: Internet 

programming, computer graphics or information systems; 

 Data Structures; 

 Theoretical unit – such as: object oriented programming, computational models and 

operation research. 



166  Benaya et al. 

 

2.2. The Lithuanian Case 
 

In Lithuania, the directive to teach informatics came from the Ministry of Education in 

Moscow in 1985, so after year informatics lessons started in all Lithuania schools. Work 

of Lithuanian researchers in the field of the methodology of programming was well 

known in the Soviet Union. Plenty of textbooks on teaching algorithms and 

programming based on attractive tasks were developed. Methodology on teaching CS at 

secondary school level was strong and well designed by Lithuanian's researchers. 

As a part of the Education Reform in 1997, the Informatics core curriculum went 

through a major revision and it was expanded from teaching two years to four years (in 

total 136 hours) with more focus on application and the processing of information 

(mainly, text processing). In regard with the changed role of the information and 

communication technologies as well as with the needs of students and school 

communities, the curricula of all subjects were substantially revised and renewed in 

2005: subject title “Informatics” was changed to “Information Technologies (IT)”. 

The modules included in the CS curriculum are: 

 Short introduction to Programming based on Logo or Scratch – in grades 5 or 6. 

 Elements of Algorithms and Programming – for grades 9 or 10. The course is aimed 

at summarizing and systematizing students' knowledge on algorithms and drawing 

attention to their application and programming. 

 Developing Algorithms and Learning Programming – for grades 11 – 12. The topics 

include: algorithms, text files, procedure and functions, arrays, strings, records and 

programming technique. 

 

The teaching process in Lithuania depends very closely on the knowledge and 

activeness of the teachers themselves. However, the optional modules on programming 

and related topics are available in high school and in some schools also in lower grades. 

Especially learning coding became more and more popular among pupils with focus on 

web design and programming of mobile devices. 

2.3. Comparison 
 

Main principles and components of the CS curricula in both countries are similar: more 

than 2/3 of CS curricula in both countries are devoted to algorithms and programming. 

In particular, programming can now be interpreted as a component of an emerging new 

form of literacy (Vee, 2013); as a tool to conceive and create things, to develop 

creativity (Resnick, 2009); as a way for children to widen their experience and 

experiment with their own ideas (following, in a sense, Papert's Mindstorms' perspective 

(Papert, 1980)).  

Teaching programming has been designed very carefully in both countries: from 

developing teaching resources, exercises, handbooks, computer tools to teacher training 

and deep connection between educators and researchers. As we have noticed teaching 

programming has been focused on CS concepts and building understanding. Pupils are 

asked to recognize and use variables, data types and data structures, understand and 

apply control statements: assignment, condition, repetition and procedures. Rather than 

increasing various CS concepts both countries chose the way “Less is More”: learning 

less concepts but making more activities and practice. 



 Computer Science High School Curriculum in Israel and Lithuania  167 
 

Beside CS curricula at schools both countries have a long tradition of suggesting to 

pupils many different outreach activities in the CS field, especially programming clubs 

and contests such as Olympiads
1
 and the Challenge on Informatics and Computational 

Thinking “Bebras”
2
.  

2.4. Focus on CS concepts 
 

CS concepts play a central role for understanding fundamentals of computers, 

information technology, software, hardware and other devices. However, in practice, 

very often the training of skills in application software is given much more room at 

schools than to discover and going deeper into concepts of CS (Dagiene and Stupuriene, 

2016a). CS education should be taken seriously and combine various forces. To obtain 

deep understanding of CS concepts, formal lessons are not enough attractive for keeping 

students’ motivation. Students should be encouraged to play with these CS concepts in 

their everyday life. 

Educators agree, that learning fundamental concepts and principles at an early age is 

very important for a deeper understanding of various computer science topics (Dagiene 

et al., 2017). There exist some activities based on attractive learning: CS Unplugged
3
 (is 

a collection of free learning activities that teach CS through engaging games and puzzles 

that use cards, string, crayons and lots of running around); code.org
4
 (a blocky coding 

platform, but have a course that uses a blended learning approach to teaching CS, which 

means that students learn from a mix of online, self-guided activities and unplugged 

activities with teacher-led activities that use no computer at all.) 

One of the way to introduce CS concepts are short concept-based tasks for different 

age students. International challenge on Informatics and Computational Thinking Bebras 

focus on concepts-based tasks. These tasks can include a wide range of concepts within 

CS including algorithms and programs, both sequential and concurrent; data structures 

like heaps, stacks and queues; modelling of states, control flow and data flow; human-

computer interaction; graphics; etc. The learning and understanding process of CS 

concepts will come later, actually after practice to solve many of these tasks (Dagiene 

and Stupuriene, 2016b). Learning through solving small pieces of concept-based tasks, 

or a flipped learning, fits better to the digital era society. A teacher’s role is very 

important for strengthening the understanding of CS concepts. Teachers can help pupils 

to clarify task solutions, to explain why it is informatics/CS, to provide resources for 

readings and discussions. 

The challenge has been successfully conducted in the Davidson Institute of Science 

Education at the Weizmann Institute of Science in Israel. It arose from a partnership 

among academia, the Ministry of Education, and K–12 educators (Haberman et. al., 

2011).  

In the next section we describe the matriculation and final exams both in Israel and 

Lithuania. 

                                                 
1 http://www.ioinformatics.org 
2 http://www.bebras.org/ 
3 http://csunplugged.org/ 
4 https://code.org/ 

http://www.ioinformatics.org/


168  Benaya et al. 

 

3. Matriculation/Final Exams  

3.1. The Israeli Case 
 

All high school students are required to take matriculation exams in the main subjects 

studied in high school. The Israeli matriculation exams are similar to the American AP 

exams in that they are external nationwide exams. Internal high school exams are used to 

prepare students for the national matriculation exams. The final grade in the subject 

tested is calculated as the average of the matriculation exam and an internal grade which 

is based on the internal exam and the student performance throughout the year. It is 

important that teachers will be familiar with the matriculation exams in order to prepare 

their students in the best way possible (Drysdale et al., 2005). The questions in the 

matriculation exams, like the AP exams, should test the intended concepts accurately, 

unambiguously, and without bias (Hunt et al., 2002).  

The content of the matriculation exam of FCS1 and FCS2 reflects the foundations of 

algorithmic thinking and programming. The duration of the exam is three hours. The 

exam is divided into three sections according to the Bloom taxonomy.  

 The first section contains 5 mandatory ten point questions which test basic skills 

such as knowledge and comprehension.  

 The second section includes 3 fifteen point questions which the students are required 

to answer two of them. The questions in this section are application questions which 

require the students to solve problems to new situations by applying acquired 

knowledge. The questions in this section may require writing a small program, or 

writing a sub-program and demonstrating its use or tracing a given program. This 

section requires the use of sequential and/or nested patterns.  

 The third section includes 2 twenty point questions from which the students are 

required to answer one. The questions in this section require analytic and synthesis 

skills. This section requires writing a complete program which includes: defining 

appropriate sub-tasks, defining main variables and data structures and implementing 

the code including documentation. 

For the third unit Second Paradigm or Application the students are required to 

prepare a project according to the units' topic and requirements. The students present 

their project to external examiners who are usually CS high school teachers from other 

schools. The students must defend and run their projects and answer questions posed by 

the examiner.  

The fourth and fifth unit (Data Structures and Theory) have a combined 3-hour 

exam. The first part deals with Data Structures and the second part deals with the Theory 

unit. In each part the students are presented with four questions from which they must 

select two. 

3.2. The Lithuanian Case 
Exams in school cause contradictory feelings. No doubt that having a maturity exam 

increases the value of the subject. School students and teachers often give more respect 

to exams than to the process of learning. Besides, it is better for pupils to have more 

choice for choosing exams. In 1995, the informatics maturity exam was developed. 

Informatics as a separate subject was taught for many years in Lithuanian schools thus to 

establish the maturity exam in informatics was a natural process. Discussion on 

informatics exams has been presented in (Blonskis and Dagiene, 2008).  



 Computer Science High School Curriculum in Israel and Lithuania  169 
 

The main goal of the Informatics exam is to encourage students to take interest in 

programming. The demand for programmers is considerable. Programming as a creative 

process is being comprehended by learning to write programs from one’s as early as 

possible youth upwards. Algorithmic and structural thinking skills greatly influence the 

conception of the exact sciences.  

The results of the Informatics exam are being recognized when choosing studies of 

informatics or informatics-related specialties at Lithuanian universities. Those, who pass 

the Informatics exam successfully, have wider possibilities to enter CS-related studies in 

higher education. At the same time, it checks whether student have the aptitude for 

studying informatics: there are many first year students who quit their studies since they 

find programming too hard to understand and an uninviting occupation for themselves.  

Lithuania's maturity programming exam is an interesting use case of semi-automatic 

evaluation. Research on exam data demonstrated that this approach is rather effective 

and still provides good quality evaluation. However, this type of evaluation is still not 

very popular among CS teachers and the outcome of this use case can be rather 

interesting for the community. 

The Informatics exam consists of two parts: the larger part (75%) is allocated to 

programming, while the rest (25%) concerns the issues of computer literacy. The 

programming part consists of test (25%) and two practical tasks (50%). The aim of the 

programming test is to examine the level of students’ knowledge and understanding of 

the tools required in programming (elements of programming language, data types and 

structures, control structures, basic algorithms). 

The Informatics exam focuses on: knowledge and understanding – 30%, skills – 30% 

and problem solving – 40%. The problems are oriented towards the selection of data 

structures and application of basic algorithms to work with the created data structures. 

In Lithuanian schools, each subject’s exam has its own curriculum, which is more 

concrete than the general subject’s curriculum. The curriculum of Informatics exam 

closely corresponds to the content of the programming module. Three main fields are 

emphasized: algorithms, data types and structures, and constructs of a programming 

language (Table 1). 

Table 1. Components of curriculum of Informatics exam 

 

Algorithms 

Calculation of sums, product, quantity, and 

average; Search of max/min value; Data I/O; 

Sorting; Modify algorithms  according to 

particular data structures. 

P
ro

g
ra

m
m

in
g

 e
n
v

ir
o

n
m

en
t.

 T
ec

h
n

o
lo

g
y

 o
f 

st
ru

ct
u

ra
l 

(p
ro

ce
d

u
ra

l)
 p

ro
g

ra
m

m
in

g
. 

T
es

ti
n

g
. 

P
ro

g
ra

m
 d

o
cu

m
en

ta
ti

o
n

s.
 A

rr
an

g
em

en
t 

o
f 

d
ia

lo
g

s.
 P

ro
g

ra
m

 w
ri

ti
n

g
 (

st
y

le
) 

Data 

Structures 

Integer, real, char, Boolean, and string; Text 

file; One-dimensional array;  

Record; Creating simple data structures. 

 

Programming 

Language 

(Pascal) 

Program structure;  

Documentation; Variables; 

Assignment; Relational & Logical operations; 

If statement; Loops; 

Compound statement;  

Procedure & function;  

Parameters & arguments;  

Standard math procedures & functions; 

Procedures & functions related to files. 



170  Benaya et al. 

 

The main attention is being paid to the abilities to choose the proper data types and 

data structures, also to the implementation of the algorithms and developing the 

programs. 

An exam is not the best way of teaching students; – it seems to be late. We have 

noticed something different. The students who intend to take the programming exam 

choose the programming module a year before and try to follow the exam model while 

studying. In other words, if a lot of attention is paid to writing programs, if there are 

many tasks of algorithms and data structure selection in the exam, the students pay much 

attention to the mentioned points while learning. Therefore, the exam performs an 

educational function. 

The following section presents some statistics regarding students' participation and 

achievements and exam evaluation. 

4. Statistics and evaluation  

4.1. The Israeli Case 
 

The data in this section was taken from the Publications of the Israeli Central Bureau of 

Statistics and from the Science and Technology Department in the Ministry of Education 

(Publications…, 2013; Sciences…, 2014).  

The following statistics refer to the percentage and grades of students studying CS in 

2012:  

 The percentage of students studying the 5-point CS program in high school is 10.4% 

and the percentage of students studying only the 3-point CS program in high school 

is 5%. 

 97% of the students who took the CS matriculation exams passed the exams. The 

percentage of females who passed these exams is slightly higher than the percentage 

of males who passed the exams. 

 The average final grade of FCS1 and FCS2 exam was 88, while the average final 

grade of the Data Structures and Theory exam was 80.  

 The Theory exam was distributed as follows:  

o 67% selected Computational Models and achieved an average grade of 81.1 

o 12% selected Object Oriented Programming with C# and achieved an average 

grade of 81.1 

o 8.4% selected Object Oriented Programming with Java and achieved an average 

grade of 80.6 

o 10.4% selected Computer Systems and achieved an average grade of 76 

o 2% selected operation research and achieved an average grade of 82.5 

4.2. The Lithuanian Case 
 

The practical part of the Informatics consists of two tasks – students have to write 

programs for the given problems. The practical tasks constitute 50% of all points. The 

main aim is to examine the students’ ability to master independently the stages of 

programming activities, i.e. to move from the formulation of the task to the final result.  

Obviously, the contest system from Olympiads can be useful, but it cannot be used 

without significant changes. A new automated evaluation system with all the 



 Computer Science High School Curriculum in Israel and Lithuania  171 
 

requirements met was developed. Application of the evaluation operates with packages 

of solutions. Each solution must be compiled, and then run with several data sets. The 

answers provided for all these data sets must be compared with the correct one.  

The exam may be approached in two ways: on the one hand, it is the evaluation of 

the results achieved by a student; on the other hand, it could heighten the motivation to 

learn. Both must be considered when planning the exam. The exam should be prepared 

so that it measures the competences needed for further studies in CS. The exam is based 

on the optional module of the basics of programming which consists of four parts: 1) 

introduction – basic elements of programming; 2) data structures; 3) developing 

algorithms; 4) testing and debugging programs. 

Students should demonstrate understanding of existing code (Lister et al., 2004). 

According to many years of experience, the exam has settled structure: 30% is allocated 

to knowledge and understanding skills, and the rest – to problem solving. The problems 

are oriented towards the selection of data structures and application of basic algorithms 

to work with the developed data structures.  

In the practical part students have to write programs for the given two tasks. The 

main aim is to examine the students’ ability to master the stages of programming 

activities independently. The first task is intended to examine the students’ abilities to 

write programs of the difficulty described in educational standards. The abilities of 

students to use the procedures or functions as well as basic data types, to realize the 

algorithms for work with data structures as well as the abilities to manage with input and 

output in text files are examined. The second task is intended to examine the students’ 

understanding and abilities to implement data structures. The core of the task is to 

develop the appropriate structures of records together with arrays. The abilities to input 

data from a text file to array of records, to perform operations by implementing the 

analyzed algorithms, and to present the results in a text file are being examined.  

Evaluation of the programs submitted to the exam is a very important issue. The 

National Examination Centre has made a decision to create an automatic evaluation 

system with all the requirements met. The system consists of several modules 

responsible for the evaluation of different aspects such as evaluation of the programming 

style. The development still continues, as the main rules of the exam change step-by-step 

and new ideas arise for better evaluation (Table 2). One of the latest ideas is to integrate 

open question answer testing in the same system, by adding C++ as a possibility for the 

programming part. 

 

Table 2. Evaluation of the program development 

Parts of Program Evaluation % of Points 

Testing. Automatic evaluation. 80 

Data structures, data reading, actions of calculation, printing of results. 

Evaluated only if results of at least one test are incorrect. 
80 

Obligatory requirements to the program (procedures & functions for 

single actions are indicated), programming technology, and style. 
20 

 

Application of the evaluation operates with packages of solutions. Each solution 

must be processed as follows: it must be compiled, and then it must be run with several 



172  Benaya et al. 

 

data sets. The answers provided for all these data sets must be compared with the correct 

ones.  

The evaluator team tries to evaluate the solutions positively. This means that students 

get points for their effort. For example, correct input/output routines can be assessed by 

several points. Also, some points can be gained for dividing the program to subroutines, 

for using complex data structures like the array or record, for writing good comments, 

for good programming style, etc. These criteria can be easily evaluated by a person, 

while computer evaluation is not so obvious. This is the reason for manual evaluation of 

solutions. 

The first tasks are easier therefore a larger number of students attempt to solve them. 

The second tasks are intended to examine the students’ understanding and abilities of 

implementation of record data type. The core of the task is to develop the appropriate 

structures of records together with arrays. The abilities to input data from text files to 

arrays containing elements of the record type, to perform operations by implementing 

the analyzed algorithms and to present the results in a text file are examined. The 

operations are to be performed only with numerical values. The curriculum does not 

require operations with character strings, only reading and derivation of such strings are 

applied. 

In order to get maturity certificate students should pass a compulsory mother 

tongue exam and at least two optional exams. Informatics exam has quite good number 

of participants, over two thousand (in comparison, Chemistry and Physics exams have 

around three thousand students each). The number of failed students varies from 2% to 

17% (Table 3).  

 

Table 3. Informatics exam in 2011-2016 

Year 2011 2012 2013 2014 2015 2016 

Attended students 1871 1830 2328 2268 2502 2207 

Pass 97.69% 92.73% 82.43% 92.21% 93.17% 93.52% 

5. Teachers' Attitudes towards the CS Curriculum  
 

The teachers' attitudes towards the CS curriculum are vital for the success of CS 

education. It is important that the teachers identify with the curriculum in order for their 

teaching to be effective. 

Due to the vital role of the teachers, we were interested in examining their views. 

Thus, we conducted a preliminary study among the CS teachers in both countries, in an 

attempt to learn about their backgrounds, attitudes and opinions towards the CS 

curriculum. We posed a 12-question questionnaire by e-mail to CS teachers in both 

countries. 

For the Israeli case, the questionnaire was sent to 137 CS teachers, and was answered 

by 25 of them (18%). This response rate is similar to the response rate in other research 

in this field in Israel. We want to point out that CS in high school in Israel is an elective 

subject selected by only 15.4% of the students therefore CS is not taught in all high 

schools and the total numbers of CS teachers is not very high. We also want to point out 

that the questionnaire was sent primarily to senior teachers and heads of CS programs in 

their schools.  



 Computer Science High School Curriculum in Israel and Lithuania  173 
 

For the Lithuanian case, the questionnaire was sent to about 650 IT/CS teachers 

(usually IT teachers teach CS as well in lower secondary schools), and was answered by 

337 of them (about 52%). Results from the questionnaire in depth are presented in paper 

by Dagiene and Stupuriene (2016a). Below we present the questions from the 

questionnaire along with a summary of the teachers' answers. 

Which CS unit are you teaching? 

The Israeli case 

Table 4 shows the percentage of respondents teaching each of the units in the CS 

curriculum. The most popular options for the Second Paradigm or Application unit 

among the respondents were Internet programming and low-level programming. The 

most popular option for the Theory unit among the respondents was computational 

models followed by object oriented programming. 

Table 4. Israel - percentage of respondents teaching each of the CS units 

 

CS Unit % of  Respondents 

Foundation of Computer Science 1 and 2 88% 

Second Paradigm or Application 64% 

Data Structures 76% 

Theory 68% 

 

The Lithuanian case 

Table 5 shows the percentage of respondents teaching each of the units in the CS 

curriculum. Only 27% of the respondents teach informatics in high school. The rest 

teach IT in lower grades.  

Table 5. Lithuania - percentage of respondents teaching each of the CS units 

 

CS unit % of Respondents 

Basic Knowledge on Informatics 3.6% 

Basic Knowledge on Information Technology 69.4% 

Introducing Algorithms and Programming 5.6% 

Developing Algorithms and Learning Programming 21.4% 

 

For how many years have you been teaching Informatics? 

The Israeli case 

 25% of the respondents have been teaching CS for 3 to 6 years. 

 75% of the respondents have been teaching CS for more than 6 years. 

The Lithuanian case 

 3% of the respondents have been teaching Informatics for less than 3 years. 

 7% of the respondents have been teaching Informatics for 3 to 6 years. 

 90% of the respondents have been teaching Informatics for more than 6 years. 

 



174  Benaya et al. 

 

Are you in charge of Informatics or Information Technology in your school? 

The Israeli case 

52% of the teachers were heads of the CS program in their schools. 

The Lithuanian case 

86% of the teachers were heads of the Informatics program in their schools. 

What is your Informatics/CS education? 

The Israeli case 

 All of the respondents, but one, have at least an undergraduate degree. Half of them 

have an undergraduate degree in CS, 28% of them have an undergraduate degree in 

CS Education and 17% of them have an undergraduate degree in unrelated field. 

 60% of the respondents have a graduate degree and mainly in education. 21% of 

them have a graduate degree in CS. 

 80% of the respondents have a teaching certificate. 80% of them have a CS teaching 

certificate. 

The Lithuanian case 

All of the respondents have at least an undergraduate degree. 52% of them have an 

undergraduate degree in CS or Informatics and 12% have an undergraduate degree in 

unrelated fields. 36% of the respondents have a graduate degree. 

Rank from 1 to 4 your satisfaction with the Informatics curriculum (1 – very 

satisfied, 4 – not satisfied).  

The Israeli case 

The vast majority of the respondents (79%) claimed that they were very satisfied or 

satisfied with the informatics curriculum and only one respondent claimed that she was 

no satisfied with the informatics curriculum. Most of the respondents felt that the 

curriculum puts too much emphasis on algorithmic thinking. Half of the respondents 

claimed that the curriculum is missing new technology topics such as android 

programming, gamming, etc. 

The Lithuanian case 

Only 22% of the respondents claimed that they were satisfied or very satisfied with the 

informatics curriculum, while 66% of the respondents claimed that they were not very 

satisfied with the informatics curriculum and 11% claimed that they were not satisfied at 

all.  

Some of the respondents' comments were: 

 IT must be compulsory in primary school from 3
rd

 grade (now compulsory from 5
th

 

grade) emphasizing security of internet, passwords, etc. including robotics and 

programming with Scratch. Creation of presentation should be introduced in 5
th

 

grade because a lot of teachers in other subjects required it in early years (now it is 

taught in 7
th

 grade). 

 More programming in 7
th

 and 8
th

 grade, and more hours for teaching, because in 7
th

 

and 8
th

 grade there are half lessons per week, and the rest of the time is designated 

for integration with other subjects (but in reality it does not work). 

 Many topics and theory are taught in 9
th

 and 10
th

 grade, but a lot of students don’t 

remember anything, because in 8
th

 grade they have a break from informatics. 



 Computer Science High School Curriculum in Israel and Lithuania  175 
 

 The curriculum needs more programming and algorithmic thinking topics. 

 Informatics must be compulsory throughout secondary school. 

 Maturity exam is very difficult for students who do not have programing in early 

years because a part of the exam is designed for programming. 

 Our tutorials are ten years old and there are topics, such as floppy disk which are not 

relevant. 

Do you think the Informatics Curriculum needs to be updated? If so, Suggest in 

what directions. 

The Israeli case 

Also most of the respondents claimed that they were satisfied with the Informatics 

curriculum. Some of them made the following comments:  

 There is too much emphasis on technique and not enough on algorithm. 

 Object first is too abstract for beginners and she suggests introducing objects after 

operations. 

 The curriculum should introduce advanced topics such as machine learning, 

graphics, computer networking and data mining. 

 The curriculum is missing operating systems, computer systems and file 

manipulation. 

 One of the respondents said that she would like to have more professional textbooks 

and another said that the curriculum should be updated every few years and not 

continuously. 

Suggestions related with CS units: 

 First and second unit (Foundation of Computer Science 1 and 2) – 77% of the 

respondents claimed that the students find the unit interesting or very interesting and 

the rest claimed that the students find it partially interesting. 

 Third unit (Second Paradigm or Application) – 65% of the respondents claimed that 

the students find the unit interesting or very interesting. Most of the respondents 

claimed that Internet programming, information systems and low-level 

programming are the most important options for the students' CS education while 

logic programming, functional programming and computer graphics are less 

important. 

 Fourth unit (Data Structures) – 74% of the respondents claimed that the students 

find the unit interesting or very interesting. One respondent recommended adding 

inheritance and polymorphism to this unit. 

 Fifth unit (Theory) – 82% of the respondents claimed that the students find the unit 

interesting or very interesting. All of the respondents claimed that object oriented 

programming is the most important option for the students' CS education. 64% 

claimed that computational models are also important or very important for the 

students' CS education while operation research, computer systems and assembly 

and parallel and distributed programming are less important. 

The Lithuanian case 

Some of the respondents' comments were as follows:  

 Nowadays there are a lot of modern technologies and it is important to present them 

to students.  

 More and more jobs require computer literacy and therefore computers, information 

and internet should be introduced to students.  



176  Benaya et al. 

 

 We need to introduce topics such as: 3D printers, game creating apps, databases and 

programs working with sound. 

Do you feel that you have enough professional support from other Informatics 

teachers or workshops etc.? 

The Israeli case 

Most of the respondents (76%) feel that they have enough professional support. Many of 

them pointed out that they gain support from workshops, discussion groups and blogs 

organized by the National Teachers Center
5
 and the Science and Technology Office in 

the Ministry of Education
6
 and also from other CS teachers. 

The Lithuanian case 

 A bit less than half of the respondents (45%) feel that they have enough professional 

support. They pointed out that Informatics teachers have a group on Facebook on 

which they share their experiences.  

 55% of the respondents feel that they do not have enough professional support. 

They claimed that many courses for teachers are not free and are given only in the 

capital. They also claimed that they need more courses for advanced teachers, more 

practical courses as opposed to theoretical courses. 

Which programming language in your opinion is most appropriate for teaching 

Foundation of CS 1 and 2 (Israel) / Introducing Algorithms and Programming 

module (Lithuania) and which programming language for getting familiar with 

basic knowledge on Informatics? 

The Israeli case 

Table 6 shows the percentage of respondents supporting different programming 

languages as most suitable for teaching Foundations of Computer Science 1 and 2. Some 

of the respondents' comments were: That the language should be chosen according to the 

industry requirements; Python's environment is easy to learn; Java is open source. 

Table 6. Percentage of respondents supporting each programming language for teaching 

Foundations of CS1 & 2 

 

Programming Language % of  Respondents 

Java 60% 

C# 48% 

Python 12% 

C 8% 

C++ 4% 

Visual Basic 0% 

 

Table 7 shows the percentage of respondents supporting different programming 

languages as most appropriate for getting familiar with basic knowledge on Informatics.  

                                                 
5 http://cse.proj.ac.il 
6 http://edu.gov.il 



 Computer Science High School Curriculum in Israel and Lithuania  177 
 

The respondents who supported Scratch claimed: that it is friendly language with easy 

syntax and fast results and does not require abstract thinking; that it enables to combine 

games with algorithmic thinking; that it is not threatening; that it interests both girls and 

boys; that it gives a good foundation without too much theory; Scratch has a Hebrew 

version and therefore it is more appealing to the young children. 

Table 7. Percentage of respondents supporting each programming language for teaching basic 

knowledge on Informatics 

Programming Language % of  Respondents 

Scratch 60% 

C# 20% 

Java script 16% 

Java 8% 

Visual Basic 8% 

Logo 4% 

Other 12% 

 

The Lithuanian case 

Table 8 shows the percentage of respondents supporting different programming 

languages as most suitable for teaching "Introducing Algorithms and Programming". 

Some of the respondents' comments were:  

 If you know C++, you can pass an exam better, and this programming language is 

necessary for university. 

 For 5
th

 to 8
th

 grade could be Scratch, for 9
th

 to 10
th

 grade – Python, for 11
th

 to 12
th

 

grade – Python, Java and C++ 

Table 8. Percentage of respondents supporting each programming language for teaching 

algorithms and programming 

Programming Language % of Respondents 

C++ 58.8% 

Scratch 13.4% 

Python 4.5% 

C# 3% 

Java 2.1% 

Visual Basic 1.8% 

C 0.9% 

Other 15.7% 

 

Table 9 shows the percentage of respondents supporting different programming 

languages as most appropriate for getting familiar with basic knowledge on Informatics. 

The respondents who supported Scratch claimed that there is a lot of useful information 

and lessons on the Internet such as code.org tool. The respondents who supported Logo 

claimed that a lot of senior teachers know LOGO, so sometimes it is not so easy to 



178  Benaya et al. 

 

change the programming language because teachers have their lesson plans and they do 

not want to change them. 

Table 9. Percentage of respondents supporting each programming language. for teaching basic 

knowledge 

 

Programming Language % of Respondents 

Logo 32.6% 

C++ 28.2% 

Scratch 23.1% 

C# 1.8% 

C 1.5% 

Visual Basic 0.9% 

Java 0.6% 

Other 11.3% 

 

 

Do you think basic knowledge on Informatics should be compulsory for every 

student in the education system (Similar to foreign language)? 

The Israeli case 

A bit more than half of the respondents (57%) claimed that basic knowledge on 

Informatics should be compulsory for every student in the education system. Some of the 

respondents' comments supporting Informatics as compulsory subject were: 

 Algorithmic thinking is important for problem solving in other areas in life. 

 Algorithmic thinking is as important as Mathematics and contributes to the 

understanding of technology in the modern world. 

 Algorithmic thinking contributes to logical thinking, abstraction and analytic 

capabilities and modular thinking. 

 Today programming is a skill that is important for everyone. 

Some of the respondents' comments against Informatics as compulsory subject were: 

 There is a wide variety of students and not all them will find the subject interesting. 

 Informatics is suitable only for the science students. 

 It is recommended to teach computer application and not Informatics. 

 It is recommended to teach higher level Mathematics rather than Informatics. 

The Lithuanian case 

Many of the respondents think that basic knowledge on Informatics should be 

compulsory for every student in the education system for the following reasons:  

 Informatics is prevalent in daily life therefore it is important to learn it. 

 Physics explains the laws of reality and informatics explains the laws virtual reality. 

 We need to think algorithmically and analyze the data from daily life. 

 

 



 Computer Science High School Curriculum in Israel and Lithuania  179 
 

Starting from which grade do you think algorithm and programming should be 

introduced? 

The Israeli case 

Half of the respondents though that algorithm and programming should be introduced as 

early as the 5
th

 or 6
th

 grade. A third of the respondents thought that it should be 

introduced in the 7
th

 grade and the rest thought that it should be introduced in the 9
th

 or 

10
th

 grade. 

Several respondents commented that early introduction of algorithm and 

programming will develop thinking skills in later classes. One respondent said that 

children are already exposed to algorithmic thinking through the use of technology and 

computer games therefore it should be easy to start teaching formally at an early age.   

Few of the respondents that supported the 7
th

 grade claimed that students at that age 

are mature enough to cope with algorithm thinking.  

The Lithuanian case 

About 40% of the respondents though that algorithms and programming should be 

introduced as early as the 5
th

 or 6
th

 grade. About 40% of the respondents thought that it 

should be introduced in the 7
th

 or the 8
th

 grade.  

Some of the comments were: 

 The concept of algorithm could be explained from 5
th

 grade. 

 Easy algorithms could be introduced in early years and it must be a continuous 

process. 

 It is important to show students that informatics it is not only word processing. 

6. Summary and Discussion 
 

The changing global context due to the impact of ICT is redefining the type of literacy 

and skills that are needed. Such skills are not only technical but also cognitive and they 

involve high-order thinking. The importance of new skills has started to receive 

considerable political interest throughout Europe (Informatics Education, 2013). These 

are new challenges for researchers to concentrate their attention to this field. 

Informatics education in schools does not clear up the myths about CS and most of 

the students in high schools graduate with no clear answers to the popular statements 

formulated as “relations”: CS = programming, CS = IT (ICT), CS = computer literacy, 

CS = a tool for studying other subjects, CS  scientific discipline. The White Paper by 

the CSTA (Stephenson et al., 2005) lists a number of challenges and requirements that 

must be met if we want to succeed in bridging the gaps in education and improve 

education in informatics as a CS discipline:  

 students should acquire a broad overview of informatics;  

 informatics instruction should focus on problem solving and algorithmic thinking;  

 informatics should be taught independently of application software, programming 

languages and environments;  

 informatics should be taught using real-world problems;  

 informatics education should provide a solid background for the professional use of 

computers in other disciplines.  

As we can see from the above sections, each country developed a unique curriculum 

for high school CS education. Israel introduced CS in high school in the mid-1970s 



180  Benaya et al. 

 

while in Lithuania Informatics was introduced a few years later. Both curricula are 

continuously being developed and updated according to recommendation of important 

interest groups and international organizations such as ACM, CSTA and UNESCO. In 

both countries there is a strong involvement of researchers from the academia in 

curriculum development and implementation.  

Both countries focus on the fundamentals of algorithms and programming and data 

structures. In Israel it is implemented in the first 2 units Foundation of Computer Science 

1 and 2 and in the fourth unit Data Structures. In Lithuania it is implemented in the 

optional module on programming for high school. Israel's program includes additional 

modules including an additional paradigm or application and a theoretical unit. 

From the survey results we found that most of the respondents in both countries are 

senior teachers who have been teaching CS for more than 6 years and a large percentage 

of them (86% in Lithuania and 52% in Israel) head the CS program in their schools. 

About half of the teachers in both countries have an undergraduate degree in CS and 

good number of teachers (36% in Lithuania and 60% in Israel) also has a graduate 

degree. Therefore, we value their responses which are based on many years of 

experience and insight on CS education. 

In Israel, the vast majority of the respondents (79%) claimed that they were very 

satisfied or satisfied with the informatics curriculum while in Lithuania 77% of the 

respondents claimed that they were not very satisfied with the informatics curriculum. 

Some of the comments were that they would like more emphasis on programming, 

modern technologies and new learning materials.  

Most of the respondents in Israel felt that they have enough professional support 

while in Lithuania only about half felt the same. They mentioned that they would like 

more practical advanced courses and pointed out that teachers do not take the courses 

because they are only in the capital and are not free.  

In Israel most of the respondents support Java and C# as an appropriate 

programming language for teaching Fundamentals of CS while in Lithuania most of the 

teachers support C++. 

In Lithuania most of the respondents claimed that basic knowledge on Informatics 

should be compulsory for every student in the education system while in Israel only 

about half felt the same. Half of the respondents in Israel and about 40% in Lithuania 

thought that algorithms and programming should be introduced as early as the fifth or 

sixth grade and the preferred programming language in Israel was Scratch while in 

Lithuania the preferred programming languages were Logo, C++ and Scratch. 

From this research we can conclude that the teachers feel that it is important for the 

curriculum to be continuously updated and developed according to advances in the field 

and that it is important to develop teacher support programs and to introduce algorithmic 

thinking as early as 5
th

 or 6
th

 grade. 

 

References 
 

Atchison, W. F., Conte, S. D., Hamblen, J. W., Hull, T. E., Keenan, T. A., Kehl, W. B., Viavant, 

W. (1968). Curriculum 68: Recommendations for academic programs in computer science: a 

report of the ACM curriculum committee on computer science. Comm. of the ACM, 11(3), 

151-197. 

Blonskis, J., Dagienė, V. (2008). Analysis of students’ developed programs at the maturity exams 

in information technologies. In International Conference on Informatics in Secondary 



 Computer Science High School Curriculum in Israel and Lithuania  181 
 

Schools-Evolution and Perspectives, pp. 204-215. Springer Berlin Heidelberg. 

 

Computing at School Working Group, (2012). A Curriculum Framework for Computer Science 

and Information Technology. http://www.computingatschool.org.uk/data/uploads/ 

Curriculum%20Framework%20for%20CS%20and%20IT.pdf 

Dagiene, V., Stupuriene, G. (2016a). Informatics Concepts and Computational Thinking in K-12 

Education: A Lithuanian Perspective. Journal of Information Processing, 24(4), 732-739. 

Dagienė, V., Stupuriene, G. (2016b). Bebras - a sustainable community building model for the 

concept based learning of informatics and computational thinking. Informatics in Education-

An International Journal, 15(1), 25-44. 

Dagienė, V., Sentence, S., Stupuriene, G. (2017). Developing a Two-Dimensional Categorization 

System for Educational Tasks in Informatics. Informatica, 28(1), 23-44 

Drysdale, S., Hromcik, J., Reed, D., Hahne, R. (2005). The year in review: changes and lessons 

learned in the design and implementation of the AP CS exam in Java. In ACM SIGCSE 

Bulletin (Vol. 37, No. 1, pp. 323-324). ACM. 

Gal-Ezer, J., Beeri, C., Harel, D., Yehudai, A. (1995). A high school program in computer science. 

Computer, 28(10), 73-80. 

Gal-Ezer, J., Harel, D. (1999). Curriculum and course syllabi for a high-school CS program. 

Computer Science Education, 9(2), 114-147. 

Haberman, B., Averbuch, H., Cohen, A., Dagiene, V. (2011). Work in Progress - Initiating the 

Beaver Contest on Computer Science and Computer Fluency in Israel. In 41 st ASEE/IEEE 

Frontiers in Education Conference. October 12-15, 2011, Rapid City, South Dakota (p. 1-2). 

©2011 IEEE. URL http://fie-conference.org/fie2011 

Hunt, F., Kmoch, J., Nevison, C., Rodger, S., Zelenski, J. (2002). How to develop and grade an 

exam for 20,000 students (or maybe just 200 or 20). In ACM SIGCSE Bulletin (Vol. 34, 

No. 1, pp. 285-286). 

Informatics education: Europe cannot afford to miss the boat (2013). Report of the joint 

Informatics Europe & ACM Europe Working Group on Informatics Education. URL 

http://www.informatics-europe.org/images/documents/informatics-education-europe-

report.pdf 

Joint IEEE Computing Society/ACM Task Force on Computing Curricula. (2013). Final Report. 

URL http://www.acm.org/education/CS2013-final-report.pdf 

K–12 Computer Science Framework, (2016). URL http://k12cs.org/wp-content/uploads/2016/ 

09/K%E2%80%9312-Computer-Science-Framework.pdf 

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., Simon, B. (2004). A 

multi-national study of reading and tracing skills in novice programmers. In ACM  SIGCSE 

Bulletin (Vol. 36, No. 4, pp. 119-150).  

Merritt, S. M., Bruen, C. J., East, J. P., Grantham, D., Rice, C., Proulx, V. K., Wolf, C. E. (1993). 

ACM model high school computer science curriculum. Commun. ACM, 36(5), 87-90. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. 

Publications of the Israeli Central Bureau of Statistics (2013) at: URL http://www.cbs.gov.il/ 

reader/shnaton/shnatonh_new.htm?CYear=2013&Vol=64 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Kafai, Y. 

(2009). Scratch: programming for all. Comm. of the ACM, 52(11), 60-67. 

Science and Technology Office in the Ministry of Education (2014) at: URL 

http://cms.education.gov.il/EducationCMS/UNITS/MadaTech/csit 

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D. O’Grady-Cuniff, D., Boucher Owens, B., 

Stephenson, C., Verno, A. (2011). CSTA K-12 Computer Science Standards. CSTA 

Standards Task Force. 

Stephenson, C. et al. (2005). The New Education Imperative: Improving High School Computer 

Science Education. Final Report of the CSTA Curriculum Improvement Task Force, CSTA, 

ACM.  

Tenenberg, J., McCartney, R. (2014). Editorial: Computing education in (k-12) schools from a 

cross-national perspective. ACM Transactions on Computing Education (TOCE), 14(2), 6. 

http://www.computingatschool.org.uk/data/uploads/
http://fie-conference.org/fie2011/
http://k12cs.org/wp-content/uploads/
http://www.cbs.gov.il/%20reader/shnaton/shnatonh_new.htm?CYear=2013&Vol=64
http://www.cbs.gov.il/%20reader/shnaton/shnatonh_new.htm?CYear=2013&Vol=64


182  Benaya et al. 

 

 

 

The Royal Society. Shut down or restart? (2012). The way forward for computing in UK schools. 

The Royal Society. URL https://royalsociety.org/~/media/educationcomputing-in-

schools/2012-01-12-computing-in-schools.pdf 

Tucker, A. B., Barnes, B. H., Aiken, R. M. (1991). Computing Curricula 1991; a summary of the 

ACM/IEEE-CS Joint Curriculum Task Force report. Comm. of the ACM, 34(6), 68-85. 

Tucker, A. (2003). A Model Curriculum for K--12 Computer Science: Final Report of the ACM 

K--12 Task Force Curriculum Committee. 

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition 

Studies, 1(2), 42-64. 

Authors’ information 
 
Tamar Benaya holds a M.Sc. in Computer Science from Tel-Aviv University. She is a faculty 

Member of the Computer Science Department at The Open University of Israel. She designed and 

developed several advanced undergraduate Computer Science courses and workshops, and she 

serves as a course coordinator of several courses. She also supervises student projects. She is a 

lecturer of Computer Science courses at The Open University of Israel. Her research interests 

include Distance Education, Collaborative Learning, Computer Science Education, Computer 

Science Pedagogy and Object Oriented Programming. 

 

Ela Zur is involved in the Israel IOI project since 1997, and repeatedly served as a deputy leader. 

She holds a PhD Degree in Computer Science Education from Tel-Aviv University. She is a 

faculty member of the Computer Science Department at the Open University of Israel. She 

designed and developed several advanced undergraduate Computer Science courses and 

workshops, and currently serves as a course coordinator of several courses. Her research interests 

include Distance Education, Collaborative Learning, Computer Science Education, Computer 

Science Pedagogy, Teacher Preparation and Certification and Object Oriented Programming. 

 

Valentina Dagienė is professor and principal researcher at Vilnius University Institute of 

Mathematics and Informatics. She has published over 200 scientific papers and more than 50 

textbooks in informatics for high schools. She has been working in various expert groups and work 

groups, organizing the Olympiads in informatics among students, also engaged in localization of 

software and educational programs, e-learning, and problem solving. She is an Executive Editor of 

international journals "Informatics in Education" and "Olympiads in Informatics". She has 

participated in several EU-funded R&D projects, as well as in a number of national research 

studies connected with technology and education. 

 

Gabrielė Stupurienė is a doctoral student at Vilnius University Institute of Mathematics and 

Informatics at the Department of Informatics Methodology. She has been working with the Bebras 

challenge since 2010. As a Master student she worked on Conceptualisation of Informatics 

Fundamentals through the Bebras Tasks of earlier years. Her main research focus is developing 

informatics concepts based educational model for schools. 

 

Received April 5, 2017, revised May 9, 2017, accepted May 10, 2017 


