Paper:
Adaptive Formation Transition of a Swarm of Mobile Robots Based on Phase Gradient
Daisuke Kurabayashi*1, Tatsuki Choh*2, Jia Cheng*3,
and Tetsuro Funato*4
*1Tokyo Institute of Technology
*2Toshiba Corporation
*3NTT Data Corporation
*4Kyoto University
- [1] Y. Ikemoto, K. Kawabata, T. Miura, and H. Asama, “Mathematical Model of Proportion Control and Fluctuation Characteristic in Termite Caste Differentiation,” J. of Robotics and Mechatronics, Vol.19, No.4, pp. 429-435, 2007.
- [2] M. Ashikaga, M. Kikuchi, T. Hiraguchi, M. Sakura, H. Aonuma, and J. Ota, “Foraging Task of Multiple Mobile Robots in a Dynamic Environment Using Adaptive Behavior in Crickets,” J. of Robotics and Mechatronics, Vol.19, No.4, pp. 466-473, 2007.
- [3] S. Emoto, N. Ando, H. Takahashi, and R. Kanzaki, “Insect-Controlled Robot –Evaluation of Adaptation Ability–, J. of Robotics and Mechatronics,” Vol.19, No.4, pp. 436-443, 2007.
- [4] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, “A Vision-Based Formation Control Framework,” IEEE Trans. Robotics and Automat., Vol.18, pp. 813-825, 2002.
- [5] C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer Graphics, Vol.21, No.4, pp. 25-34, 1987.
- [6] J. Ota and T. Arai, “Motion Planning of Multiple Mobile Robots Using Dynamic Groups,” Proc. IEEE Int. Conf. Robotics and Automat., pp. 28-33, 1993.
- [7] J. Ota, T. Arai, and Y. Yokogawa, “Distributed Strategy-Making Method in Multiple Mobile Robot System,” Distributed Autonomous Robotics Systems, pp. 103-106, 1994.
- [8] D. J. C. Knowles and M. J. Carlie, “The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds,” J. Gen. Microbiol., Vol.108, pp. 17-25, 1978.
- [9] N. Shimoyama, K. Sugawara, T. Mizoguchi, Y. Hayakawa, and M. Sano, “Collective Motion in a System of Motile Elements,” Phys. Rev. Lett., Vol.76, No.20, pp. 3870-3873, 1996.
- [10] A. Takamatsu and T. Fujii, “Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure, in Sensors Update,” Wiley-VCH, Weinheim, Vol.10, p. 33, 2002.
- [11] M. Shimizu, A. Ishiguro, T. Kawakatsu, Y. Masubuchi, and M. Doi, “Coherent Swarming from Local Interaction by Exploiting Molecular Dynamics and Stokesian Dynamics Methods,” Proc. Int. Conf. Intelligent Robots and Systems, pp. 1604-1619, 2003.
- [12] Y. Kuramoto, “Chemical Oscillations, Waves, and Turbulence,” Springer, 1984.
- [13] F. Mondada et al., “The e-puck, a Robot Designed for Education in Engineering,” Proc. 9th Conf. on Autonomous Robot Systems and Competitions, Vol.1, No.1, pp. 59-65, 2009.
- [14] H. Kawata et al., “Development of ultra-small lightweight optical range sensor system,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3277-3282, 2005.
- [15] H. Kori and A. S. Mikhailov, “Strong Effects of Network Architecture in the Entrainment of Coupled Oscillator Systems,” Phys. Rev. Vol.E.74, No.066115, 2006.
- [16] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A Stable Tracking Control Method for an Autonomous Mobile Robot,” Proc. IEEE Int. Conf. Robotics and Automat., pp. 384-389, 1990.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2010 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.