Paper:
Views over last 60 days: 396
Formation and Piezoelectric Property of PZT Film Synthesized Hydrothermally
Yoko Ohba, Takaaki Tsurumi, Etsuo Sakai and Masaki Daimon
Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-10-okayama, Meguro-ku, Tokyo 152-8552, Japan
Received:March 18, 1999Accepted:April 2, 1999Published:August 20, 1999
Keywords:PZT, hydrothermal synthesis, film, piezoelectricity
Abstract
Crystalline lead zirconate titanate solid solution (PZT) films were deposited on titanium substrates hydrothermally with a flow. The composition and concentration of solution or slurry werte controlled by adding reactants during the reaction. Although the PZT layer showed the anticipated piezoelectric and dielectric constants, an intermediate layer was created between the PZT layer and Ti substrate. Bimorph bending actuators using the film were bent by voltage applied perpendicular to the film. Bending displacement of the actuator was calculated theoretically using a composite beam model in which both sides of a Ti substrate were covered by PZT films with an intermediate layer between the Ti substrate and PZT film. A comparison of measured and theoretical displacement suggested that the piezoelectric cinstant was comparable to that of PZT ceramics with the same composition. Polar axes in as-deposited film were aligned from the film surface to the substrate, so actuators were bent by applied voltage without poling. Bending displacement increased with decreasing intermediate layer thickness, consistent with the composite.
Cite this article as:Y. Ohba, T. Tsurumi, E. Sakai, and M. Daimon, “Formation and Piezoelectric Property of PZT Film Synthesized Hydrothermally,” J. Robot. Mechatron., Vol.11 No.4, pp. 238-243, 1999.Data files:
Copyright© 1999 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.