Research Paper:
Fuzzy Logic-Controlled Gripper Force Feedback for Haptic Device
Athena Rosz Ann R. Pascua*,, Dino Dominic F. Ligutan* , Marielet A. Guillermo** , Arvin H. Fernando*** , Edwin Sybingco* , Argel A. Bandala* , Ryan Rhay P. Vicerra** , and Elmer P. Dadios**
*Department of Electronics and Computer Engineering, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines
Corresponding author
**Department of Manufacturing Engineering and Management, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines
***Department of Mechanical Engineering, De La Salle University
2401 Taft Avenue, Manila 1004, Philippines
This paper aims to solve the nonlinearity in PID control of a force-sensitive resistor on a haptic device and gripper using a fuzzy logic controller. The proposed system will match the force exerted by the haptic device to those applied at the gripper, and will be simulated using simulation open framework architecture.
- [1] T. Endo et al., “Five-fingered haptic interface robot: HIRO III,” IEEE Trans. Haptics, Vol.4, No.1, pp. 14-27, 2011. https://doi.org/10.1109/TOH.2010.62
- [2] V. P. Da Fonseca, D. J. Kucherhan, T. E. A. De Oliveira, D. Zhi, and E. M. Petriu, “Fuzzy controlled object manipulation using a three-fingered robotic hand,” Proc. of 11th Annu. IEEE Int. Syst. Conf. (SysCon 2017), 2017. https://doi.org/10.1109/SYSCON.2017.7934753
- [3] D. Petković, M. Issa, N. D. Pavlović, L. Zentner, and Ž. Ćojbašić, “Adaptive neuro fuzzy controller for adaptive compliant robotic gripper,” Expert Syst. Appl., Vol.39, No.18, pp. 13295-13304, 2012. https://doi.org/10.1016/j.eswa.2012.05.072
- [4] J. Leigh, S. Jung, Y. Kim, S. Park, H. Seo, H. Yeom, C. Chung, S. Kim, and M. Bang, “Development of brain-machine interface for integrated robot arm-gripper system control using non-invasive and less-invasive technology,” J. of the Neurological Sciences, Vol.381, pp. 1129-1130, 2017. https://doi.org/10.1016/j.jns.2017.08.3184
- [5] A. Ghosh, C. Yoon, F. Ongaro, S. Scheggi, F. M. Selaru, S. Misra, and D. H. Gracias, “Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery,” Frontiers in Mechanical Engineering, Vol.3, No.7, 2017. https://doi.org/10.3389/fmech.2017.00007
- [6] H. J. Lee, J.-K. Ryu, J. Kim, Y. J. Shin, K.-S. Kim, and S. Kim, “Design of modular gripper for explosive ordinance disposal robot manipulator based on modified dual-mode twisting actuation,” Int. J. of Control, Automation and Systems, Vol.14, No.5, pp. 1322-1330, 2016. https://doi.org/10.1007/s12555-014-0440-6
- [7] C. Beltran-Gonzalez, A. Gasteratos, A. Amanatiadis, D. Chrysostomou, R. Guzman, A. Toth, L. Szollosi, A. Juhasz, and P. Galambos, “Methods and techniques for intelligent navigation and manipulation for bomb disposal and rescue operations,” IEEE Int. Workshop on Safety, Security and Rescue Robotics, Rome, Italy, 2007. https://doi.org/10.1109/SSRR.2007.4381291
- [8] H. Yaguchi, K. Nagahama, T. Hasegawa, and M. Inaba, “Development of an Autonomous Tomato Harvesting Robot with Rotational Plucking Gripper,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016. https://doi.org/10.1109/IROS.2016.7759122
- [9] J. R. Davidson, A. Silwal, C. J. Hohimer, M. Karkee, C. Mo, and Q. Zhang, “Proof-of-concept of a robotic apple harvester,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016. https://doi.org/10.1109/IROS.2016.7759119
- [10] R. Jonschkowski, C. Eppner, S. Hofer, R. Martin-Martin, and O. Brock, “Probabilistic Multi-Class Segmentation for the Amazon Picking Challenge,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016. https://doi.org/10.1109/IROS.2016.7758087
- [11] C. Liang, K. Chee, Y. Zou, H. Zhu, A. Causo, S. Vidas, T. Teng, I. Chen, K. Low, and C. Cheah, “Automated Robot Picking System for E-Commerce Fulfillment Warehouse Application,” The 14th IFToMM World Congress, Taipei, Taiwan, 2015. https://doi.org/10.6567/IFTOMM.14TH.WC.OS13.077
- [12] J. L. Espanola, A. A. Bandala, R. R. P. Vicerra, and E. P. Dadios, “Design of a Fuzzy-Genetic Controller for an Articulated Robot Gripper,” Proc. of IEEE Reg. 10 Annu. Int. Conf. (TENCON 2018), pp. 1701-1706, 2018. https://doi.org/10.1109/TENCON.2018.8650431
- [13] D. D. Ligutan, L. J. S. Cruz, M. C. D. P. Del Rosario, J. N. S. Kudhal, A. C. Abad, and E. P. Dadios, “Design and implementation of a fuzzy logic-based joint controller on a 6-DOF robot arm with machine vision feedback,” 2017 Computing Conf., London, pp. 249-257, 2017. https://doi.org/10.1109/SAI.2017.8252111
- [14] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., Vol.14, No.5, pp. 676-697, 2006. https://doi.org/10.1109/TFUZZ.2006.883415
- [15] R. Sadeghian, P. Sedigh, P. Azizinezhad, S. Shahin, and M. T. Masouleh, “Design, Development and Control of a Three Flexible-Fingers Gripper Based on Hand Gesture,” Proc. of 6th RSI Int. Conf. Robot. Mechatronics (IcRoM 2018), pp. 359-363, 2018. https://doi.org/10.1109/ICRoM.2018.8657517
- [16] F. Faure et al., “SOFA: A Multi-Model Framework for Interactive Physical Simulation,” Y. Payan (Ed.), “Soft Tissue Biomechanical Modeling for Computer Assisted Surgery,” Springer Berlin, Heidelberg, 2012. https://doi.org/10.1007/8415_2012_125
- [17] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller Part I,” IEEE Trans. Syst., Man, Cybern., Vol.20, No.2, pp. 404-418, 1990. https://doi.org/10.1109/21.52551
- [18] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller Part II,” IEEE Trans. Syst., Man, Cybern., Vol.20, No.2, pp. 419-435, 1990. https://doi.org/10.1109/21.52552
- [19] D. D. Ligutan, A. C. Abad, and E. P. Dadios, “Adaptive Robotic Arm Control Using Artificial Neural Network,” 2018 IEEE 10th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 2018. https://doi.org/10.1109/HNICEM.2018.8666292
- [20] K. H. Su, S. J. Huang, and C. Y. Yang, “Implementation of robotic gripper based on pressure module and smart fuzzy controller,” 2014 Int. Conf. on Fuzzy Theory and its Applications (iFUZZY2014), pp. 57-60, 2014. https://doi.org/10.1109/iFUZZY.2014.7091232
- [21] A. H. Fernando, I. A. V. Marfori, and A. B. Maglaya, “A comparative study between artificial neural network and linear regression for optimizing a hinged blade cross axis turbine,” 2015 Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu, Philippines, 2015. https://doi.org/10.1109/HNICEM.2015.7393225
- [22] A. Fernando and L. G. Lim, “Velocity analysis of a six-wheel modular mobile robot using MATLAB-Simulink,” 2021 IOP Conf. Ser.: Mater. Sci. Eng., Vol.1109, Article No.012037, 2021. https://doi.org/10.1088/1757-899X/1109/1/012037
- [23] A. H. Fernando, L. A. G. Lim, A. A. Bandala, R. R. Vicerra, and E. P. Dadios, “Design of a Fuzzy Control Crane Type Robot Arm for EOD Application,” 2021 IEEE 13th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 2021. https://doi.org/10.1109/HNICEM54116.2021.9732026
- [24] R. A. R. Bedruz, J. Martin, Z. Maningo, A. H. Fernando, A. A. Bandala, R. R. P. Vicerra, and E. P. Dadios, “Dynamic Peloton Formation Configuration Algorithm of Swarm Robots for Aerodynamic Effects Optimization,” 2019 7th Int. Conf. on Robot Intelligence Technology and Applications (RiTA), Daejeon, Korea, pp. 264-267, 2019. https://doi.org/10.1109/RITAPP.2019.8932871
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.