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Abstract

Comprehensive analysis that aims to understand the topology of real-world networks
and the development of algorithms that replicate their characteristics has been
significant research issues. Although the accuracy of newly developed network protocols
or algorithms does not depend on the underlying topology, the performance generally
depends on the topology. As a result, network practitioners have concentrated on
generating representative synthetic topologies and utilize them to investigate the
performance of their design in simulation or emulation environments. Network
generators typically represent the Internet topology as a graph composed of
point-to-point links. In this study, we discuss the implications of multi-access links on
the synthetic network generation and modeling of the networks as bi-partite graphs to
represent both subnetworks and routers. We then analyze the characteristics of sampled
Internet topology data sets from backbone Autonomous Systems (AS) and observe that
in addition to the commonly recognized power-law node degree distribution, the
subnetwork size and the router interface distributions often exhibit power-law
characteristics. We introduce a SubNetwork Generator (SubNetG) topology generation
approach that incorporates the observed measurements to produce bipartite network
topologies. In particular, generated topologies capture the 2-mode relation between the
layer-2 (i.e., the subnetwork and interface distributions) and the layer-3 (i.e., the degree
distribution) that is missing from the current network generators that produce 1-mode
graphs. The SubNetG source code and experimental data is available at
https://github.com/netml/sonet.
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1 Introduction

As the largest human-made complex network, the Internet grows with no central
authority. Internet connectivity is provided by tens of thousands of Autonomous
Systems (AS), organizations that maintain a physical network, or a group of networks.
Each AS is assigned a unique identification number to be employed with the Border
Gateway Protocol (BGP), and possesses Internet Protocol (IP) address ranges to be
utilized for unique identification of devices across the Internet and routing of the
network traffic. A large number of decentralized AS, which vary in size and geographic
footprint, connect individuals, businesses, and organizations. Each AS produces its
network based on it’s own economic and technical objectives [1]. Overall, the Internet
evolves with an interplay between cooperation so that the network works efficiently, and
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competition so that network providers earn a profit. Knowledge of the underlying
network graph helps in understanding the large scale characteristics and dynamics of
the Internet [2]. Network practitioners test new protocols and systems using simulations
or emulations, but more realistic results can be obtained when employed topologies
reflect the characteristics of genuine networks [3–6]. If the synthetic topology used
during the simulation does not reflect the crucial characteristics of real networks,
evaluation results will be misleading and the expected performance will not be observed
when the system is deployed in the wild [7, 8]. Hence, network generators are needed to
produce synthetic networks that reflect the underlying properties of genuine networks.

Modeling of interactions and generation of representative networks has been a
significant challenge in various research fields such as modelling an efficient network for
power-grids [9] and water distribution networks [10], and several generation models have
been developed [11–14]. Internet topology modeling focuses on understanding local and
global characteristics of the Internet backbone, and construction of graph models that
mimic the observed topological features. When one samples a network to generate
synthetic networks, many of the underlying relations may get omitted or altered. This
may result in a graph that does not resemble the original network for crucial
characteristics [15]. For example, when designing algorithms to find communities of
multilingual users in social networks, language metric needs to be taken into account
along with the traditional network connectivity [16]. Likewise, when modeling protein
interactions to detect proteins dedicated to a specific cellular process, one needs to
consider the neighborhood expression variance of proteins [17].

Network topology generation involves producing synthetic graphs that replicate
certain characteristics of the original network. The randomness of the generated
topology depends on the set of metrics that are targeted. As the number of constraints
increases, the network is described in greater detail, and hence the generated topology
better resembles the reference graph. In the utmost case, one can define a complete set
of metrics that uniquely describe every aspect of a network, and the generated topology
will be isomorphic to the reference. However, increasing the number of constraints raises
the algorithmic complexity to find a graph meeting all constraints. Hence, topology
generators need to balance between the complexity and the representativeness.

The Internet traffic between two systems is transferred through a set of routers (i.e.,
layer 3 of the Internet protocol suite) interconnected via various link technologies (i.e.,
layer 2 of the Internet). A router might be connected via a direct link (i.e., a
point-to-point link) or through a multi-access medium (e.g., bus, switch, Fiber
Distributed Data Interface (FDDI) ring, etc.) using a single network interface. Routers
have multiple network interfaces and each interface has a dedicated IP address. A group
of IP addresses is typically represented as a subnet where the most significant bits are
the same. When routers are connected over a link, the connected interfaces are assigned
IPs from the same subnet range, and hence are referred to as a subnetwork. Note that,
we refer to the logical IP address range as subnet, and the physical connectivity among
a group of network interfaces as a subnetwork.

Multiple nodes are connected through a multi-access link, and they are commonly
deployed in the Internet backbone [18,19]. Previous synthetic Internet topology
generators have often ignored multi-access links, the building block of the networks. In
a topological perspective, multi-access links have two major implications, namely,
pairwise one-hop connectivity between subnetwork devices and sharing of the link
bandwidth. In generating link-level synthetic Internet topologies, we should consider
interface and subnetwork distributions to reflect the multi-access links [20] in addition
to the observed degree distribution [21]. The degree of a node is typically defined as
the number of nodes it is connected and is typically higher than the number of network
interfaces of the device. A 2-mode graph representation reflects the actual interfaces of
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a node as well as it’s one-hop connectivity via subnetworks. Modeling of Internet
topology as a 2-mode graph helps us capture the building blocks of the networks along
with the large-scale characteristics of the Internet backbone.

As we are interested in the link-level Internet topology, we focus on the interface
distribution and subnetwork distribution as two metrics to model the underlying
connectivity in addition to the commonly utilized degree distribution. Interface
distribution reflects the number of network interfaces of devices (such as routers, servers,
etc) and plots the number of devices with a given number of interface count. Likewise,
subnetwork distribution exhibits the number of network interfaces connected to
subnetworks (i.e., point-to-point links or multi-access links) and plots the number of
subnetworks with a given number of attached devices. The degree distribution ignores
the access medium over which a single interface connects multiple nodes over a
subnetwork. A link-layer device (e.g., a bus, switch, or FDDI ring) or a link-layer
network (e.g., a switch forms the single collision domain of the subnetwork. Note that
“degree” indicates the number of one-hop neighbors , and is proportional to the number
of interfaces and the size of the subnetworks those interfaces are attached.

In order to produce realistic synthetic topologies, we analyzed the backbone Internet
topologies sampled by the Autonomous System Mapper (ASM) [22]. Our analysis of
several AS reveals that many have power-law distribution patterns in the degree,
subnetwork, and interface distributions [20]. In this study, we derive the power-law
exponent of the degree, subnetwork and interface distributions. We also derive the
condition for the power-law exponent ranges that ensure the existence of a connected
network when interface and subnetwork distributions are power-laws. We then utilize
these results in the SubNetwork Generator (SubNetG) topology generator.

Focusing on the relation between layer 2 (i.e., subnetwork and interface) and layer 3
(i.e., degree) in the Internet, this study aims to provide a link-level network topology
generation mechanism focusing on the building blocks of communication networks.
Consideration of the multi-access links in the synthetic topology generation addresses a
missing level of granularity in the Internet topology models. Additionally, modeling
multi-access links based on genuine Internet measurements produces synthetic
topologies that better capture the underlying characteristics of the backbone networks.

In the rest of the paper, Section 2 summarizes synthetic network generation
approaches. Section 3 summarizes the missing component of the current Internet
topology generators. Section 4 introduces the SubNetwork Generator (SubNetG) that
produces 2-mode graphs where the distributions are power-law. Section 5 presents
evaluations of SubNetG, and Section 6 concludes the paper.

2 Related Work

In this section, we present an overview of synthetic network generation approaches that
could be employed to represent Internet topologies.

Random Network Models: Initial network generation relied on traditional
random network frameworks such as the Erdos−Renyi model [13] where nodes are
randomly interconnected. Random network model is not a good representation of the
Internet topology due to its failure to capture many crucial properties such as the
heavy-tailed degree distribution and high clustering.

Hierarchical Network Models: Hierarchical topology generators mimic network
deployment practices. Tiers [23] captures the hierarchical aspect of the Internet by
implementing the network hierarchy where nodes are linked with a minimum spanning
tree at LAN and MAN levels. Similarly, GT-ITM [24] generates hierarchical networks
by building transit and stub domains. GT-ITM generates a connected random graph in
which each node is considered as a transit domain and then grows each domain to
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contain a random graph. After expanding the operation for n-levels, a number of
random graphs are generated and connected to each node as stubs. Finally, IGEN [25]
implements Internet engineering heuristics to populate networks based on design choices.
While focusing on the network growth processes, hierarchical network generators miss
large-scale characteristics of the Internet.

Small-World Network Models: Many real-world networks, including the
Internet, have shown to exhibit the small world characteristic, i.e. high clustering and
low characteristic path length. Watts−Strogatz model interpolates ordered lattices with
large clustering coefficients and purely random networks with small average path
lengths to produce small world networks [14]. Although small world networks obtain
high clustering and low average path length, they lack degree characteristics observed in
the Internet topologies.

Scale-Free Network Models: Internet topologies are shown to exhibit power-law
degree distribution at AS level and router level [21, 26]. These studies shifted the
attention to degree-based generators [27]. In order to bridge the gap between the local
and global properties of the Internet, statistical physics-based approaches were
proposed [28]. Preferential attachment mimics network growth where edges are not
placed randomly but have a tendency to connect to high degree nodes [29]. The Boston
university Representative Internet Topology gEnerator (BRITE ) [6] generates networks
with a power-law degree distribution and allows locality-based preferential attachment
to generate hierarchical networks. BRITE also utilizes the Erdos-Renyi model where the
probability of the existence of a link between two nodes is inversely proportional to the
distance between the nodes. Inet [30] produces synthetic Internet graphs that have
power-law degree distributions. Jellyfish [31] uses a core formed around central nodes to
obtain topologies that have core-periphery structures.

dK-Series Network Models: dK-series provides a basis to characterize a
graph [32]. For an n node network 0K-graph only matches the average degree, 1K-graph
matches the degree distribution, 2K-graph matches the Joint Degree Distribution, and
so on. The nK-graph is isomorphic of the original graph. Researchers have introduced a
methodology for the rescaling process to produce different sized graphs with the same
2K-series characteristics [33], but there is no known efficient generation mechanism for
higher dK matches.

Dual Internet topology generator: Center for Applied Internet Data Analysis
(CAIDA) introduced a scalable tool that generates dual Internet topologies that aim to
capture both router-level and AS-level network characteristics [34]. They use the
methods from [35] to generate a network of ASes and methods from [36] to generate a
router network for each AS. Nonetheless, the generated networks do not reflect the
2-mode link-level characteristics.

3 Link-Level Internet Characteristics

Researchers have studied various graph metrics to summarize reference graphs.
Although many of these metrics (such as degree distribution, clustering, and
characteristic path length) are essential to specify a network, there may be metrics that
are better suited for a specific domain. Current topology generators do not consider
multi-access links and model all subnetworks as point-to-point links. This may become
an important hurdle for achieving accurate network simulations/emulations. In this
study, in addition to the commonly utilized degree distribution, we focus on the
interface and subnetwork distributions to capture the link-level connectivity of the
Internet backbone networks. Subnetworks provide link-level connectivity among a set of
device interfaces.

Before examining the interface and subnetwork distributions, we first illustrate these

September 24, 2020 4/22



Fig 1. Sample Topologies

distributions on a toy network. Figure 1 shows two different topologies with the same
node size. Network 1 is composed of only point-to-point links, whereas Network 2
involves multi-access links that enable one-hop connectivity to multiple nodes through a
single link. Nodes belonging to the same subnetworks are marked with the same colors.
In both topologies, nodes have the same node degrees, and hence the degree
distributions are the same. However, when the number of interfaces is compared, the
distinction of multi-access links becomes clear. Although router R has the same degree
of 5 in both of networks, its interface count is 5 in Network 1 but 2 in Network 2. While
both networks have the same degree distribution, their interface distributions are
considerably different as shown in Figure 2.

To show the difference of the network representations in practice, we perform a
maximum throughput simulation based on the Internet2 [37] topology, backbone of the
academic networks in the U.S. Network throughput is an important metric to measure
the maximum amount of data that could be sent from a source to a destination.
Gathering the ground truth information from configuration files of Internet2
routers [38], we found that Internet2 backbone had 440 nodes (i.e., routers and servers)
connected over 90 subnetworks. We observe 60% of the Internet2 subnetworks are
multi-access links with more than two attached network interfaces.

We use ns-3 network simulator [39] to simulate the throughput where the Internet2
backbone is modeled as a 1-mode graph (where routers are assumed to be directly
interconnected via point-to-point links) and a 2-mode graph (i.e., network interfaces are
connected over subnetworks). We then assume data traffic is sent between 10 random
source and destination pairs and repeat each scenario 100 times. We use the same
source-destination pairs and assume a link bandwidth of 1 Gb for transferring data in
both representations.

Table 1 shows the 5-number summary of cumulative throughput between randomly
selected node pairs. We observe that 1-mode representation of the topology, which
ignores the underlying subnetworks, produces an inflated bandwidth. The traditional
1-mode model of the internet topologies ignores the underlying multi-access links that
share the communication link among multiple subnetwork interfaces and hence has a
single collision domain that limits simultaneous data transfers. Hence, the 1-mode

Fig 2. Interface, Subnetwork and Degree Distribution of Sample Topologies
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Table 1. Network throughput (Mbps) simulation on Internet2 topology

Representation Min 1st quartile Median 3rd quartile Max
1-mode 2,682 2,727 2,727 2,728 2,729
2-mode 317 381 392 402 424

model produces results that are significantly higher than the achievable bandwidth that
is reflected in the 2-mode model. This experiment shows the importance of the 2-mode
graph modeling of the link-level Internet.

We showed the effect of neglecting multi-access links and the corresponding collision
domain between the systems connected over a shared link. Overall, current topology
generators that only use point-to-point links considerably overestimate the maximum
throughput of networks, even if they could capture the cliquishness of the underlying
topologies. As the inflation is by an order of n2 for n interfaces, the difference in the
bandwidth of the simulations will be exponentially higher for larger subnetworks.

4 SubNetG: SubNetwork Generator

In this section, we present the SubNetwork Generator (SubNetG) to produce synthetic
topologies that reflect the link-level characteristics of the Internet backbone. In
particular, we generate network topologies in the proximity of the desired network size,
node interface distribution, and subnetwork size distribution. The generation process
also converges the degree distribution to the measured power-law distribution.

4.1 Obtaining Power-Law Distribution with a Cutoff

Power-law distribution is a distribution where frequency of attributes vary as a power of
the attribute, and follows the exponential form Fi = Ai−α where i indicates the
attribute such as degree, A is the scaling coefficient and α is the power-law exponent.
In a power-law distribution, there are considerably abundant small values (i.e., Fi is
high for small values of i) while extremely large values are rare but possible. As
log(Fi) = log(Ai−α) = log(A) + (−α)log(i), we observe a power-law distribution as a
line in the log-scale where α exponent determines the slope of the curve. While α
exponent uniquely determines the distribution, the scaling coefficient A reflects the
network size.

We could generate a power-law distribution with any desired α using the
transformation method [40], such that, one can produce a number of uniformly
distributed random numbers within the 0 ≤ r < 1 range and then convert the numbers
using x = (1− r)−1/(α−1) transformation equation. The resulting distribution would be
a power-law within the range of 1 ≤ x <∞ and the given power-law exponent α. This
approach would yield a set of numbers having a distribution of the given power-law
exponent. However, with this method, we can only generate interface and subnetwork
distributions with a given number of interfaces, but we don’t have direct control over
the number of nodes.

Algorithm 1 generates a set of numbers with the specified number of nodes N and
power-law exponent α. The min and max parameters are used to adjust the minimum
and maximum degrees in the distribution. Routers and switches have a physical
footprint, and hence having a router or switch with a very large number of interfaces is
impractical. The max interface routers or subnetworks is determined based on extensive
measurement of ASes [22]. Similarly, an optional parameter min is used to adjust the
minimum degree nodes for subnetworks since subnetworks have at least two interfaces.
If min is not specified, a value of 1 is used.
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Algorithm 1: PowerLawCutoff(N, α, max, [min])

1 Sizei ← 0 ∀ i
2 Distributioni ← Ai−α ∀ i
3 UpperBound←

∑
iAi

−α

4 for n ← 1 ... N do
5 R← random[0, UpperBound]
6 i← min //default min = 1
7 while R > 0 & i ≤ max do
8 R← R−Distributioni
9 i+ +

10 Sizei + +11

In Line 2 of the algorithm, a temporary distribution curve is generated with the
given power-law exponent α but with a much larger distribution coefficient A. In Line 3,
the integral of the temporary distribution curve is calculated. Then, the algorithm
iterates number of nodes N times to obtain a skewed probability distribution using the
temporary curve. Line 5, generates uniformly distributed random numbers so that the
loop in Lines 7-9 determines the number of interfaces for the node. Finally, Line 10
increments the distribution count of the determined size i.

At the end of the algorithm, the sum of values in the final distribution
∑

i Ai−α will
approximate the desired network size N. Downscaling in integers introduces error due to
rounding, and the sum of values might be a bit different than the intended distribution.
Hence, the final network size might be different from the expected network size by a
couple of nodes.

Using Algorithm 1, we generated multiple networks with various number of nodes
(i.e., 1K, 10K, and 100K) and power-law exponents of 2, 2.5, and 3. Figure 3 shows the
Probability Distribution Function (PDF) and Complementary Cumulative Distribution
Function (CCDF) of interface distributions for networks without any cutoff using

Fig 3. Sample interface distributions with power-laws of 2, 2.5, 3

Fig 4. Sample subnetwork distributions with power-laws of 2, 2.5, 3
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Fig 5. Change in the power law exponent with a 40% cut-offy = 0.7326e0.5605x
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power-law exponents of 2, 2.5, and 3 respectively. Similarly, Figure 4 presents the
subnetwork distribution which uses a min subnetwork size of 2 without a max cutoff.
As observed in the figures, the generated interface and subnetwork sizes can be
unrealistically high especially for low power-law exponents.

The max cutoff shifts the power-law distribution of the network and depends on the
network size and the expected power-law exponent. To determine the produced alpha
value change based on the cutoff and input alpha value, we generated 3 sets of networks
with 1k, 10k and 100k nodes and a cutoff value of 40% of the network size. In each set,
we run the algorithm 15 times with varying power-law exponents and measured the
resulting power-law exponent due to the max cut-off. Figure 5 shows the median alpha
values of the resulting distributions and their exponential regression.

We analyzed the largest AS networks and their interface and subnetwork sizes [22].
The maximum interface size for the largest AS networks was around 212. Similarly, the
maximum subnetwork size was around 215. Hence, we picked these values as the max
cutoff for the network generation.

4.2 2-mode Graph Generation Approach

Subnetwork based Internet topologies cannot be modeled as a conventional 1-mode
graph as it requires a distinction between routers and subnetworks. A hypergraph
H=(N,S) is a generalized graph form where N is the set of nodes and S is the set edges.
Each element of S represents a subset of N, which is connected through the same
subnetwork. Hypergraphs are also illustrated using 2-mode bipartite graphs. In order to
maintain the subnetwork relations among the nodes, we use an undirected bipartite
graph where vertices are either nodes (e.g., a router, a server, or a computing device
with one or multiple IP addresses) or subnetworks, as shown in a toy network in
Figure 6. Each node is attached to at least one subnetwork (shown as clouds), and each
subnetwork is attached to at least two nodes (shown as routers). The number of
attachments for each subnetwork and node is shown on the figure.

In order to generate a network, the number of nodes N, the power-law exponent of
interface distribution αI, and the power-law exponent of subnetwork distribution αS are

Fig 6. Sample bipartite graph

4 3 3 2

3 3 2 2 1 1

September 24, 2020 8/22



provided by the user or obtained from the measurement data. Given the slope αI, the
area beneath the interface distribution curve should match N (i.e.,

∑
i IDi =N where

IDi indicates the number of nodes with i interfaces) [2]. In Figure 6, there are 2 nodes
with 3 interfaces (ID3 = 2), 2 nodes with 2 interfaces (ID2 = 2), and 2 nodes with 1
interface (ID1 = 2). Subsequently, we can compute the scaling coefficient AI of the
interface distribution.

Once the interface distribution is determined based on Algorithm 1, the number of
interfaces (i.e., I) can be calculated from I =

∑
i i · IDi. The number of interfaces on all

nodes I is equal to the sum of subnetwork sizes (i.e., S) so that all nodes and
subnetworks are interconnected. That is∑

i

i · IDi =
∑
j

j · SDj (1)

Subsequently, for a given subnetwork distribution exponent αS, we can determine
the scaling coefficient AD of the subnetwork distribution.

4.3 Dependence of Distributions

In this section, we analyze the dependency of degree distribution to the interface and
subnetwork distributions when all are power-laws. As the degree distribution is
determined from the 1-mode projection of the nodes in the 2-mode graph, it is
dependent on the underlying distributions of the 2-mode graph.

Once the power-law exponents of interface distribution (i.e., αI) and subnetwork
distribution (i.e., αS) are determined, we can compute the average degree (i.e., < k >)
in the network as follows. A subnetwork of size j, by definition, connects j nodes in the
one-hop distance. Hence, once a node connects to this subnetwork, its degree k
increases by j− 1. Subsequently, the total degree contribution of the subnetwork to the
network is j · (j− 1). When we consider all of the subnetworks in the network, the total
degree

∑
k can be calculated as

∑
j SDj · j · (j− 1) where SDj indicates the number of

subnetworks with j devices. Dividing this value by the number of nodes (i.e., N) gives
the average degree < k > of the network as follows.

< k > = {
∑
j

SDj · j · (j − 1) }/N (2)

Similarly, the degree distribution can be utilized to calculate the number of nodes.
That is,

∑
k k ·DDk = < k > ·N where DDk indicates the number of nodes with

degree k. Hence,

< k > = {
∑
k

k ·DDk }/N (3)

Additionally, for a given power law exponent α and a number of nodes N, we can
calculate the A coefficient. Therefore, the power law exponent of the degree distribution
(i.e., αD) can be calculated for a given set of N, αI and αS parameters using the
equations 2-3 and the power-law formula of Fi = Ai−α.

Figure 7 presents the power-law exponent of the degree distribution αD with
respect to a given pair of subnetwork αS and interface αI distributions assuming ideal
power-law distributions. Note that subnetwok distribution assumes that there is no
subnetwork of size 1 (i.e., SD1 = 0) and hence the plot is not symmetrical. We
calculate the power-law exponent of the degree distribution αD for all interface αI and
subnetwork αS combinations with an increment of 0.1. Note that some of the
combinations in the vicinity of 1.0 x 1.0 have a αD = 0 (shown as black color) since
they are infeasible. In a power-law distribution, when 1 < α < 2, the first moment (i.e.,
the average < k >) is infinite along with all the higher moments [40]. Similarly, when 2
< α < 3, the first moment is finite, but the second (i.e., the variance) and higher
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Fig 7. Correlation among the distributions

moments are infinite. Since such distributions contain extremely large values [41],
obtaining a feasible configuration of interface and subnetworks (see Figure 6) becomes
impossible.

4.4 Network Connectivity

Utilizing pure probabilistic generation methods after assigning certain target degree to
nodes performs poorly in terms of connectivity [32]. During our experiments, we
observed that random matching of interfaces to subnetworks result in disconnected
graphs and that the giant component shrinks as the subnetwork and interface
distributions become steeper. In this section, we analyze issues in ensuring connectivity
between all subnetworks and nodes during the 2-mode graph generation.

Generating a connected network with power-law degree distribution is not possible
for all αI and αS pairs. Intuitively, if the ratio of single interface routers increases, it
becomes harder or even impossible to generate a connected network. Similarly, having
subnetworks with only two interfaces limit the number of configurations. Overall, every
node with more than one interface can utilize its first interface to attach to the current
giant component and each of the other interfaces to attach a new subnetwork. Hence,
the condition that guarantees the existence of a connected configuration can be
formulated as

S ≤ 1 +
∑
i=2

(i− 1) · IDi (4)

where S indicates the total number of interfaces in all of the generated subnetworks.
Figure 8 plots the connectivity with respect to the power-law exponents of the

subnetwork and interface distribution where the black line indicates above which
connected networks cannot be generated. Similarly, the red line shows the region below
which networks are infeasible irrespective of connectivity as discussed in Section 4.3.
The figure also presents the power-law exponents of the interface and subnetwork
distributions of the AS sampled by ASM [22] (also employed in the evaluations of
Section 5.2) and observe them to be within the feasible region. When the interface and
subnetwork distribution exponents are above the black line, there is no connected graph
satisfying both power-law distributions.

As the slopes become steeper, the ratio of single interface nodes and/or ratio of
smaller subnetworks increases, and eventually connectivity becomes infeasible. Analysis
of the contour and the axes reveal that connectivity is affected more by the subnetwork
distribution compared to the interface distribution. Note that, as the networks are
generated through a random process and the obtained power-laws are not perfect the
boundaries are not hard boundaries and one may obtain a connected network with
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Fig 8. Feasible αI and αS Exponents for a Connected Network
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power-laws above the line. However, it becomes harder to find a connected network
configuration as power-law exponents are closer to either boundary.

4.5 Generation Methodology

Precise matching of the distributions can be challenging to achieve due to the discrete
nature of the graphs [40]. After calculating all distributions using Algorithm 1, we
generate vertices of the bipartite graph without any edges. We assign the interface count
of each node and the size of each subnetwork according to the previously calculated
IDi and SDj, respectively. We mix the order of the nodes and subnetworks to eliminate
bias (i.e., obtain non-assortative graphs). If both subnetworks and nodes are ordered
with respect to their size, the assortative mixing of the resulting graph would be
high [42]. However, our analysis of measured AS networks indicate non-assortative
connectivity in terms of attachment between low/high interfaces and subnetworks.

Algorithm 2 provides the pseudo-code for the network generation from a given set of
Nodes and Subnetworks that are produced with the Algorithm 1 using the interface and
subnetwork distributions, respectively. In order to ensure connectivity (see Section 4.4),
we employ a Connected set of subnetworks that are connected to the main component
so far. As the network is modeled as a bipartite graph, SubNetG grows the network
expanding the connected component to have a path between any subnetwork pairs. The
design relies on the idea that at least one interface of each node is connected to a
subnetwork that is already part of the connected component, while the rest of the
interfaces of the node are connected to random subnetworks.

After initializing Edges to an empty set (Line 1), we assign a random Subnetwork to
the Connected component (Line 2). The outer loop in Line 3 iterates over all Nodes
that were randomly sorted and the inner loop (Line 10) iterates over each interface of
the node (i.e., Nodesi) after the first one (i.e., Nodes1i ) is connected to the Connected
component (Lines 4-8). A random subnetwork is selected to be connected (Lines 11-16)
and the selected subnetwork is appended to the Connected component (Line 17). Lines
5-8 and Lines 12-16 ensure that the selected subnetwork has room for a new node
connection, and there is not already an edge between the node and subnetwork. If the
subnetwork is full, it is removed from the respective list so that it is not redundantly
selected (lines 6-7 and 14-15). Finally, the selected subnetwork is connected to the
node’s interface (Line 18). The algorithm terminates when all interfaces of all nodes
have been considered for attaching to the subnetworks. Note that in practice we also
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Algorithm 2: GenerateNetwork(Nodes, Subnetworks)

1 Edges[ ]← { }
2 Connected[ ]← { random(Subnetworks) }
3 for i ← 1 ... |Nodes| do
4 subnetwork ← random(Connected)
5 while Full(subnetwork) do
6 Connected← Connected− {subnetwork}
7 Subnetworks← Subnetworks− {subnetwork}
8 subnetwork ← random(Connected)

9 Edges← Edges ∪ {edge(Nodes1i , subnetwork)}
10 for j ← 2 ... NodesICi do
11 subnetwork ← random(Subnetworks)
12 while Full(subnetwork) or ∃ edge(Nodesi, subnetwork) ∈ Edges do
13 if Full(subnetwork) then
14 Subnetworks← Subnetworks− {subnetwork}
15 Connected← Connected− {subnetwork}
16 subnetwork ← random(Subnetworks)

17 Connected← Connected ∪ {subnetwork}
18 Edges← Edges ∪ {edge(Nodesji , subnetwork)}

need to check for the parameters to ensure feasibility before execution and consider the
lack of subnetworks especially in the Connected component during network
configuration.

Figure 9 presents the execution of the Algorithm 2 on the sample bipartite graph in
Figure 6. Note that subnetworks and routers are randomly sorted to remove assortative
linking. Figure 9-a shows the state of the graph at the end of line 2 assuming S2 is
randomly selected as the initially Connected subnetwork. Line 3 selects the first router
R1 in the list and line 4 selects S2 as it is the only subnetwork in the Connected
component. AS S2 has room for attachment, lines 5-8 are skipped. Then, line 9 adds an
edge between the first interface of R1

1 and S2 as shown in Figure 9-b. Subsequently, line
10 picks the second interface of R1, and line 11 picks a random subnetwork, assume S4.
As there are non-connected interfaces of S2, lines 12-16 are skipped. Note that, the

S1 S2 S3 S4

R1 R2 R3 R4 R5 R6

a

R1 R2 R3 R4 R5 R6

b
S1 S2 S3 S4

R1 R2 R3 R4 R5 R6

c
S1 S2 S3 S4

R1 R2 R3 R4 R5 R6

d
S1 S2 S3 S4

Fig 9. Iteration of Algorithm 2 on a Sample Network
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algorithm could have selected a subnetwork already in the Connected. Line 17 adds the
subnetworks to the Connected and line 18 adds and edge between the second interface
R2

1 and S4 as shown in Figure 9-c. Finally, algorithm loops back to second router R2 in
line 3, and randomly selects subnetwork S2 in line 4 to be connected as shown in
Figure 9-d. Note that as S2 is now full, it will be removed from the Connected and
Subnetworks when it is selected in line 4.

The time complexity of the algorithm is O(I + S) where I is the total number of
interfaces in the network, and S is the number of subnetworks. While there are two
outer loops at line 3-4, each node interface is processed only once. Likewise, the internal
loops at lines 7 and 12 are executed only once for each subnetwork to be removed from
the list when it becomes full.

5 Evaluation

In this section, we present samples of 2-mode power-law network generation with
SubNetG. In Section 5.1, we analyze whether current topology generators reflect
link-level subnetwork characteristic. In Section 5.2, we evaluate the data we obtained
from large backbone Autonomous Systems sampled across the Internet. In Section 5.3,
we show the results for the synthetic topologies that we generate using SubNetG.

5.1 Analysis of Network Generators

In this section, we assess whether network generators capture the link-level
characteristic (i.e., subnetwork connectivity) of the Internet topology. As commonly
employed network generators produce 1-mode graphs [43], we transform the 2-mode
network of link-level Internet (i.e., subnetworks and nodes) into a 1-mode network
between routers. Hence, we model subnetworks as cliques between all attached nodes,
as shown in Figure 10. Note that this estimation is not perfect as neighboring
subnetworks (such as three point-to-point links between the same triple of nodes) may
incorrectly be assumed as a single subnetwork (i.e., a three node subnetwork).

In order to analyze the clique distribution, we sampled the subnetwork based
Internet2 backbone topology [37] . Note that, even though router-level topology of other
networks are publicly shared, they do not provide the subnetwork information that is
needed for a ground truth comparison. We convert the subnetwork topology to a
point-to-point graph by replacing multi-access links of each subnetwork with a clique of
links among the subnetwork nodes. Finally, we run a clique search on the graph and
compare the distributions with the actual Internet2 Subnetwork distribution to analyze
how successful the clique search approach captures the multi-access links.

Internet2 Subnetwork curve in Figure 11 illustrates the subnetwork distribution of
the Internet2 backbone. The result of clique search is shown as the Internet2 Clique
curve. We observe a slight difference between the subnetwork and clique distributions,
i.e., at 2 and 3. In clique search, all point-to-point triangles are assumed to be a
multi-access link with three nodes. Note that, similar incorrect assumptions in larger
cliques have a negligible probability of occurrence as this will require all nodes in both
subnetworks to be attached to each other. We also utilize the Orbis topology

Fig 10. Multi-access vs. point-to-point links
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Fig 11. Clique size distributions of Internet2

generator [33], to produce the same size graph with Internet2 Clique as the reference
graph. Orbis can produce synthetic topologies of any size with the exact 1k or 2k
distribution (marked as Generated in Figure 11), and rewire the original graph while
preserving the 2k or 3k distributions (marked as Rewired in the Figure). Although the
reference Internet2 graph includes up to 20-cliques, 1k or 2k synthetic topologies do not
preserve the clique distribution. We observe that 3k rewiring preserves the clique
distribution, but a close examination revealed that cliques larger than 3 were not
rewired and remained intact.

Finally, we produced topologies replicating the characteristics of sample AS networks
in Table 2. We generated synthetic graphs using Inet [30] and BRITE [6] with both of
the Waxman and Barabasi-Albert (BA) models. For BA preferential attachment model,
BRITE uses an m parameter to indicate the number of connections a new node makes.
As the m value is increased, network density increases. However, this did not result in a
significant increase in the size of cliques in the topology. Figure 12 shows the clique
distributions of a sample AS 8928. As shown in the figure, both the number of cliques
and the clique sizes in the real topology is significantly larger than the ones in the
generated topologies. The generated topologies have clique sizes up to 20, but as seen
from the figure, measured topologies of the similar sizes can have clique sizes up to 200.
Inet produces largest cliques among other generators but it has a completely different
distribution compared to the measurements.

Both the Internet2 Subnetwork curve in Figure 11 and clique sizes and clique
distribution of the measured AS in Figure 12 illustrate the frequencies of multi-access
links in the Internet2 and real Internet topology, hence it shows the existence of
subnetworks in the backbone. Overall, we observe none of the analyzed generators
capture the subnetwork characteristics of the sampled backbone Internet topologies.

Fig 12. Clique Size Distribution of the AS 8928
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5.2 Sample Network Topologies

In this section, we analyze the topological characteristics of sample AS networks
obtained from measurements of the Internet backbone via Autonomous System Mapper
(ASM) [22]. ASM collects partial traces to every observed IP address of an AS from all
border routers it could identify for the AS. After filtering trace anomalies such as loops
and bounce-backs [44], ASM identifies subnetworks [45], IP aliases [46], and
unresponsive routers [47] to infer the underlying link-level network of the AS. Even
though ASM collects the most comprehensive snapshot of backbone AS, there may still
be unmapped regions of the network. While public measurement platforms such as
CAIDA Ark [48] and RIPE Atlas [49] provide samples of the Internet backbone, they do
not comprehensively map all interface IPs of an AS. In a previous study [43], we had
relied on such public measurement platforms [22,48,50] to estimate the power-law
parameters. In this study, we realized that their samples yield power-law parameters
that were not within the feasible range as discussed in Section 4.4. Hence, we deployed
ASM to better capture link-level connectivity of AS topologies.

Interface distribution presents the histogram of systems (e.g., router and server)
with a given number of interfaces. The number of interfaces on a system is typically
equal to the number of IP aliases for that system. ASM utilizes MIDAR [51] and
ASIAR [52] tools to resolve IP aliases in the sample topologies. Figure 13 present the
interface distributions of three sample AS. The power-law exponent value of most of the
measured AS vary between 2 and 3, as shown in Table 2. We defaulted the interface
distribution of SubNetG to the average of sampled AS, i.e., α = 2.5.

Subnetwork distribution presents a histogram of the subnetworks with a specific
size, i.e., the number of interfaces attached to the subnetwork [38]. For a given i, SDi

indicates the number of subnetworks with i attached systems. Note that the minimum i
is 2, as there should be at least two interfaces attached to a subnetwork. This metric
complements the interface distribution, where the total number of interfaces is equal to
the sum of the subnetwork sizes. We use ASIAR [52] to infer the subnetworks of the
AS based on the BGP announcements of the AS. Figure 14 presents the subnetwork
distributions of three sample AS. The power-law exponent value of the sampled ASes is

Fig 13. Interface distribution of AS 1221, AS 8928 and AS 2828

Fig 14. Subnetwork distribution of AS 1221, AS 8928 and AS 2828
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Fig 15. Degree distribution of AS 1221, AS 8928 and AS 2828

Table 2. Power-law exponents for sample backbone AS

AS 1221 2828 3549 4637 4755 4826 8928 9505 28917 31133 33891 262589 mean
αI measured 2.39 2.16 2.59 2.68 2.02 2.99 2.24 2.22 2.11 2.51 1.93 3.75 2.47
αS measured 2.32 2.48 2.35 2.42 3.91 2.46 2.37 3.52 1.93 1.64 1.57 1.84 2.40
αD measured 2.52 2.42 2.31 2.74 2.16 2.62 2.59 3.23 2.19 2.29 2.27 2.12 2.45
αD expected 2.45 2.41 2.54 2.58 2.44 2.71 2.39 2.50 2.20 2.26 1.95 2.56 2.42
αD generated 2.35 2.31 2.68 2.64 2.07 3.22 2.29 2.49 2.17 2.76 2.04 3.30 2.53

between 1.5 and 4, as shown in Table 2. We consider the average of samples, i.e.,
α = 2.4, as the default while generating synthetic topologies with SubNetG.

Degree distribution is the most utilized metric to characterize a network. Degree
distribution represents a histogram of the nodes with a certain degree and gives insight
into the structure of the network. For each node, its degree is computed from the
number of nodes that are within one-hop distance. For the sampled backbone AS, the
power-law exponent α value is mostly within 2 and 3 range and has an average of 2.45.
Figure 15 shows the degree distributions of three sample AS networks.

Table 2 presents the power-law exponent for the Interface, Subnet, and Degree
distributions of 12 AS mapped by ASM. As research has shown that visual verification
of the linearity in the logarithmic scale may be misleading, we utilize [41] for fitting and
verifying the observed power-laws. Note that, as the empirical data is not ideal
power-law distributions, the αD measured and αD expected differ for individual AS
measurements (such as in AS 9505, 33891 and 262589). Overall, the median and mean
difference between the expected and measured αD is 0.07 and 0.09, respectively.
Similarly, generated networks employ a random configuration of subnetworks and node
interfaces after establishing a minimum spanning tree to ensure connectivity, and hence
αD generated may differ from both as seen with AS 4826, 31133 and 262589. Overall,
the median and mean difference between the expected and generated αD is 0.04 and
0.08, respectively, indicating that generated networks are closer to the expected
distributions with the exception of a few outliers. One may generate new networks until
a configuration within a threshold of αD is obtained. Generated networks are further
analyzed in the next Section.

5.3 Synthetic Topologies

In this section, we analyze synthetic topologies generated with the interface and
subnetwork distributions of the measured backbone AS. While SubNetG matches the
measured power-law exponents of the interface αI and subnetwork αS distributions, it
does not directly match the degree distribution αD. We observe that the resulting
power-law exponents of the degree distributions to be similar to the genuine networks as
presented in the Table 2. Furthermore Figure 16, 17, and 18 show the comparison of
measured and generated distributions for the Subnet, Interface and Degree of three
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sample AS 1221, 2828, and 8929, respectively. Red dots show the values from the
genuine AS measurements while black dots show the values of the synthetic network
generated by SubNetG. We observe that, the generated interface and subnetwork
distributions are different from the measured distributions even though the power-law
exponents are the same. Particularly, the CCDF of measured distributions seem to
contain greater perturbations, which is expected in empirical data [41].

Additionally, we generate synthetic topologies with 1K, 10K, 100K, and 1M nodes.
Based on the averages of AS measurements presented in Section 3, we set αID = 2.5
and αSD = 2.4. Figures 19 present the interface, subnetwork, and degree distributions,
of the generated networks. Even though the generation method did not consider the
degree distribution directly, the resulting degree distributions are power-law
distributions with an average exponent of αDD = 2.77, 2.75, 2.58, and 2.53,
respectively for 1K, 10K, 100K, and 1M nodes.

Although sample topologies presented in this study use data obtained from
ASM [22], the presented algorithm is independent of the specific data set and can
produce synthetic topologies with any feasible set of distribution. Generation
parameters αDD, αID and αSD can be selected from any measurement dataset and
ported as the reference topology. Moreover, the user can supply any feasible (for feasible
parameter space) set of parameters to be matched. Overall, we observe that produced
networks have a similar interface, subnetwork, and degree distributions to the genuine
topology they are modeled after.

Fig 16. Distributions of a synthetic network based on AS 1221

Fig 17. Distributions of a synthetic network based on AS 2828

Fig 18. Distributions of a synthetic network based on AS 8929
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Fig 19. Interface, Subnetwork and Degree distribution of generated
networks with 1K, 10K, 100K and 1M nodes

6 Conclusion

Currently, synthetic network generators for the Internet topology ignore the
multi-access links and model the network as consisting of point-to-point links. However,
multi-access links such as FDDI ring, and Ethernet are widely deployed as link-layer
technologies at the backbone networks. To assess the need for 2-mode modeling, we
analyzed the impact of subnetworks on the Internet topologies by comparative graph
structure analysis of current network topology generators and performed comparative
network simulations. Our analyses on the previous network topology generators
revealed that neither the subgraph structures nor the bandwidth related characteristics
of the Internet topology are represented by the generated graphs. Additionally, we
analyzed the interface and subnetwork size distributions of sample backbone AS in
addition to the degree distribution that the current power-law based topology
generators focus on. In our analysis of top ranked backbone AS, we observe that both
subnetwork and interface distributions occasionally exhibit power-law characteristics
similar to the degree distribution.

We introduced SubNetwork Generator (SubNetG) that captures both the link-level
interface and subnetwork distributions and the network-level degree distribution. We
showed that the degree distribution is uniquely defined for a given pair of subnetwork
and interface distributions that are ideal power-laws. We also showed the necessary
condition for obtaining a connected graph with all distributions being a power-law.
Note that, the generation parameters (i.e., interface and subnetwork distributions and
network size) can be estimated based on the measurement results or provided by the
user. Finally, we present synthetic networks and show that the SubNetG captures
subnetwork characteristics of the link-layer Internet topologies as well the as degree
distribution. The SubNetG can be used for generating synthetic network topologies at
link-level, which can be utilized for simulating network protocols for more realistic
link-layer behavior (i.e., multi-access links) as well as analysis of link-layer topologies
that reflect the interaction between layer 2 (i.e., subnetworks) and layer 3 (i.e., routers).
As future work, the SubNetG algorithm can be improved to eliminate potential outliers,
consider router-level metrics such as rich-clubs that would represent network cores, and
generate subnetworks with other distributions such as exponential, log-normal, and
Weibull.
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