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Université Paris Descartes, Paris, France.

2Interdisciplinary Center for Neural Computation, The Hebrew
University, Jerusalem, Israel.
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A. Derivation of Eigenvalues with Hermite Integrals

We consider the perturbed firing rates, RA+δRA, where RA is the steady state
solution. Linearizing the rate dynamics in δRA we obtain for the dynamics
of the perturbations

τA
∂δRA(θ, t)

∂t
=

−δRA(θ, t) + αAR
1−1/αA

A

[

∑

B

∫ π/2

−π/2
dθ′JAB(θ − θ′)δRB(θ

′

, t)

]

. (1)

Since this is a linear set of equations, perturbations can be decomposed into
eigen-modes δR

(n)
A (θ), with eigenvalues λn, in the following way

δRA(θ, t) =
∞
∑

n=0

CnδR
(n)
A (θ)eλnt (2)
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where Cn are some constants.
Finding an analytical expression for the eigen-modes and eigenvalues for

this system appears to be impossible. But if σA ≪ π we can approximate
the periodic Gaussians by normal Gaussians and take the integral from −∞
to ∞ in stead of from −π/2 to +π/2. If we make this approximation δR

(n)
A

satisfies

(τAλA + 1)δR
(n)
A (θ) =

αA

(

R0
Ae−θ2/2σ2

A

√
2πσA

)1−1/αA
[

∑

B

JAB√
2πσAB

∫ ∞

−∞
dθ′e−(θ−θ′)2/2σ2

ABδR
(n)
B (θ′)

]

(3)

Because the right hand side of this equation involves the convolution of δR
(n)
B

and a Gaussian it is useful to write the eigen modes in terms of Hermite
functions. We thus write the eigen-modes as

δR
(n)
A (θ) =

∞
∑

k=0

an,k
A Hk(

√
ǫAθ) · e−ǫAθ2

(4)

where ǫA is a scaling factor which we will choose later so as to make the
expansion in Hermite functions as simple as possible.

Inserting Eqn 4 into 3 we obtain

∞
∑

k=0

(τEλn + 1)an,k
A Hk(

√
ǫAθ)e−ǫAθ2

= αA

(

R0
A√

2πσA

)1−1/αE

×

×




∑

B,k

JAB√
2πσAB

an,k
B

∫

dθ′e
−

(αA−1)θ2

2αAσ2
A

−
(θ−θ′)2

2σ2
AB

−ǫBθ
′2

Hk(
√

ǫBθ′)



 . (5)

We multiply both sides by Hp(
√

ǫEθ) and integrate over θ. Using the or-

thogonality of the Hermite polynomials,
∫∞
−∞ dθHn(θ)Hm(θ)e−θ2 6= 0 only if

m = n, we obtain
(τEλn + 1)an,p

A =
∑

B,k

Mk,p
ABan,k

B , (6)

where

Mk,p
AB ∝

∫

dθ
′

∫

dθ e
−

(αA−1)θ2

2αAσ2
A

−
(θ−θ′)2

2σ2
AB

−ǫBθ′2

Hk(
√

ǫBθ
′

)Hp(
√

ǫAθ)

=
∫

dθe−fθ2

Hp(
√

ǫAθ)
∫

dθ
′ · e−

1
Σ

(

θ
′

− θ
g

)2

Hk(
√

ǫEθ
′

), (7)
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where f = ( αA−1
2αAσ2

A

+ ǫB

g
), g = (1 + 2ǫBσ2

AB) and, Σ = 2σ2
AB/g.

Using
∫

dxe−(x−y)2Hk(x + y) = Hk(y), this can be written as

Mk,p
AB ∝ (

1

g
)n/2

∫

dθe−fθ2

Hp(
√

ǫAθ)Hk(
√

ǫB/gθ). (8)

This integral is simple to solve if ǫA = 1/2σ2
A. In this case f = 1/2σ2

A, so
that we can use the result for Hermite polynomials

∫

Hk(γx)Hp(x)e−x2

= 0, (9)

except

∫

dxH2m+p(γx) · Hp(x)e−x2

=
√

π
(2m + p)!

m!
2pγp(γ2 − 1)m, (10)

for m = 0, 1, 2, . . ..
This leads to the upper-triangle structure of the eigenvalues matrix


















M00 − D(λ) 0 M02 0 . . .
0 M11 − D(λ) 0 M13 . . .
0 0 M22 − D(λ) 0 . . .
0 0 0 M33 − D(λ . . .
...

...
... vdots

. . .



















,

where Mpk and D(λ) are the 2 × 2 matrices

Mpk =

(

Mpk
EE Mpk

EI

Mpk
IE Mpk

II

)

, and D(λ) =

(

τEλ − 1 0
0 τIλ − 1

)

(11)

respectively. The eigenvalues are given by the values of λ for which det(Mkk−
D(λ)) = 0. From this we see that the eigen-function for the nth mode has
the form

δRn
a(θ) =

⌊n
2
⌋

∑

k=0

an,n−2k
a · Hn−2k(

√
ǫa · θ) · e−ǫaθ2

. (12)

Thus, the first two modes involves only H0(x) = 1, meaning that the pertur-
bation of this mode is proportional to the steady state distribution. These
modes reflect changes in amplitude of the rate profile. The next two modes
involves only H1(x) = 2x, thus these mode can be interpreted as a tendency
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to shift the peak of the Gaussian steady-state solution. Modes five and six
contain a linear combination of H0(x) and H2(x) = 4x2 − 2 so these modes
tends to change both the amplitude and the width of the Gaussian solution.
Higher modes are more complicated.

To determine the eigenvalues we use that Mnn
AB are given by

Mnn
AB = JAB

(

R0
A

σa

√
2π

)

αA−1

αA
(

1

αA

)n− 1
2
(

σB

σA

)n+1

(13)

So that the eigenvalues fr the modes 2n and 2n + 1 are given by

(τEλ + 1)aE = Mnn
EEaE + Mnn

EIaI (14)

(τIλ + 1)aI = Mnn
IEaE + Mnn

II aI .

or λ =
−bn±

√
b2n−4τEτIcn

2τEτI
, where:

bn = τE(1 + Mnn
II ) + τI(1 − Mnn

EE) (15)

cn = (1 − Mnn
EE)(1 + Mnn

II ) + Mnn
EIM

nn
IE

The conditions for which Re(λn) < 0 ∀ n are illustrated in Figure 1.
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Figure 1: An example of a phase diagram in a symmetric case with α = 3
and τ = 3msec showing the stability of all modes in a large area of this plane.
Solid lines: cn = 0 for the first three modes. Dashed lines: bn = 0, below
which both eigenvalues of the mode n are negative. Doted line: separating
curve for real synaptic matrix. Valid synaptic values are to the left of this
curve. The ’triangle’ formed between c0 = 0, b0 = 0 and the dotted curve
contains the region where all modes are stable. See details in text.
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