Abstract
Heavy-tailed high-dimensional data are commonly encountered in various scientific fields and pose great challenges to modern statistical analysis. A natural procedure to address this problem is to use penalized quantile regression with weighted $L_{1}$-penalty, called weighted robust Lasso (WR-Lasso), in which weights are introduced to ameliorate the bias problem induced by the $L_{1}$-penalty. In the ultra-high dimensional setting, where the dimensionality can grow exponentially with the sample size, we investigate the model selection oracle property and establish the asymptotic normality of the WR-Lasso. We show that only mild conditions on the model error distribution are needed. Our theoretical results also reveal that adaptive choice of the weight vector is essential for the WR-Lasso to enjoy these nice asymptotic properties. To make the WR-Lasso practically feasible, we propose a two-step procedure, called adaptive robust Lasso (AR-Lasso), in which the weight vector in the second step is constructed based on the $L_{1}$-penalized quantile regression estimate from the first step. This two-step procedure is justified theoretically to possess the oracle property and the asymptotic normality. Numerical studies demonstrate the favorable finite-sample performance of the AR-Lasso.
Jianqing Fan. Yingying Fan. Emre Barut. "Adaptive robust variable selection." Ann. Statist. 42 (1) 324 - 351, February 2014. https://doi.org/10.1214/13-AOS1191
Information