[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Theory and Modern Applications

On a pair of fuzzy mappings in modular-like metric spaces with applications

Abstract

The aim of this work is to establish results in fixed point theory for a pair of fuzzy dominated mappings which forms a rational fuzzy dominated V-contraction in modular-like metric spaces. Some results via a partial order and using the graph concept are also developed. We apply our results to ensure the existence of a solution of nonlinear Volterra-type integral equations.

1 Introduction and preliminaries

Fixed point theory has a basic role in analysis (see [151]). Chistyakov [12] developed the idea of modular metric spaces and discussed briefly modular convergence, convex modular, equivalent metrics, abstract convex cones, and metric semigroups. The modular metric spaces generalize classical modulars over linear spaces, like Orlicz, Lebesgue, Musielak–Orlicz, Lorentz, Calderon–Lozanovskii, Orlicz–Lorentz spaces, etc. The main idea behind this new concept is the physical interpretation of the modular. We look at these spaces as the nonlinear version of the classical modular spaces. Padcharoen et al. [29] introduced the concept of α-type F-contractions in modular metric spaces and discussed some results. Further results in such spaces via different directions can be seen in [11, 22, 24, 25].

Nadler [27] presented fixed point theorems for multivalued mappings and generalized the results for single-valued mappings. Fixed point results involving multivalued mappings have applications in engineering, control theory, differential equations, games and economics, see [7, 9]. In this paper, we are concerned with multivalued mappings.

Wardowski [51] introduced the notion of F-contractions to obtain a very practical fixed point result. For more results on this direction, see [2, 4, 23, 26, 43, 47]. Here, we have used a weak family of functions instead of the function F introduced by Wardowski.

Arshad et al. [5] observed that there exist mappings having fixed points, but there were no results to ensure the existence of fixed points of such mappings. They introduced a condition on closed balls to achieve common fixed points for such mappings. For further results on closed balls, see [38, 39, 50]. In this paper, we are using a sequence instead of a closed ball.

Ran and Reurings [37] and Nieto et al. [28] gave results involving fixed point theory in partially ordered sets. For more results in ordered spaces, see [1315]. Asl et al. [6] gave the idea of \(\alpha _{\ast }\)-admissible mappings and αψ contractive multifunctions (see also [3, 17, 45]) and generalized the restriction of order. Rasham et al. [40] introduced the concept of \(\alpha _{\ast }\)-dominated mappings to establish a new condition of order and obtained some related fixed point results (see also [41, 42, 49, 50]). They proved that there are mappings that are \(\alpha _{\ast }\)-dominated, but are not \(\alpha _{\ast }\)-admissible.

The notion of fuzzy sets was introduced by Zadeh [53] and then a lot of researchers worked in this area. Namely, Weiss [52] and Butnariu [10] firstly discussed the concept of fuzzy mappings and showed many related results. Heilpern [16] gave a result for fuzzy mappings, considered as a generalization of Nadler set-valued result [27]. Due to importance of the Heilpern result, the fixed point theory for fuzzy contractions via a Hausdorff metric becomes much more important, see [3236, 38, 48].

In this paper, we establish common fixed point theorems for a pair of fuzzy \(\alpha _{\ast }\)-dominated mappings which form a generalized V-contraction in a generalized setting of modular-like metric spaces. New results can be established in dislocated metric spaces, ordered spaces, partial metric spaces, fuzzy metric spaces and metric spaces as a consequence of our findings. To support our results, applications and examples are discussed. Our theorems generalize the results given in [42, 43, 47, 49, 51]. We give the following preliminary concepts, which will be used in our results.

Definition 1.1

([44])

Let A be a nonempty set. A function \(u:(0,\infty )\times A\times A\rightarrow [ 0,\infty )\) is called a modular-like metric on A, if for all \(a,b,c\in A\), \(l>0\) and \(u_{l}(a,b)=u(l,a,b)\), it satisfies:

  1. (i)

    \(u_{l}(a,b)=u_{l}(b,a)\) for all \(l>0\);

  2. (ii)

    \(u_{l}(a,b)=0\) for all \(l>0\) then \(a=b\);

  3. (iii)

    \(u_{l+n}(a,b)\leq u_{l}(a,c)+u_{n}(c,b)\) for all \(l,n>0\).

Then \((A,u)\) is called a modular-like metric space. If we replace (ii) by “\(u_{l}(a,b)=0\) for all \(l>0\) if and only if \(a=b\),” then \((A,u)\) becomes a modular metric space. If we replace (ii) by “\(u_{l}(a,b)=0\) for some \(l>0\), then \(a=b\),” then \((A,u)\) becomes a regular modular-like metric on A. For \(e\in A\) and \(\varepsilon >0\), \(\overline{B_{u_{l}}(e,\varepsilon )}=\{p\in A: |u_{l}(e,p)-u_{l}(p,p)|\leq \varepsilon \}\) is a closed ball in \((A,u)\). We will use \(``m.l.m\). space” instead of “modular like metric space.”

Definition 1.2

([44])

Let \((A,u)\) be an \(m.l.m\). space.

  1. (i)

    The sequence \((a_{n})_{n\in \mathbb{N} }\) in A is u-Cauchy for some \(l>0\), iff \(\lim_{n,m\rightarrow \infty }u_{l}(a_{m},a_{n})\) exists and is finite;

  2. (ii)

    The sequence \((a_{n})_{n\in \mathbb{N} }\) in A is called u-convergent to \(a\in A\) for some \(l>0\), if and only if \(\lim_{n\rightarrow +\infty }u_{l}(a_{n},a)=u_{l}(a,a)\).

  3. (iii)

    \(E\subseteq A\) is called u-complete if for any u-Cauchy sequence \(\{a_{n}\}\) in E is u-convergent to some \(a\in E\), so that for some \(l>0\),

    $$ \lim_{n\rightarrow +\infty } u_{l}(a_{n},a)=u_{l}(a,a)= \lim_{n,m\rightarrow +\infty } u_{l}(a_{n},a_{m}). $$

Definition 1.3

Let \((A,u)\) be an \(m.l.m\). space and \(E\subseteq A\). An element \(p_{0}\) belonging to E is said to be a best approximation in E for \(e\in A\), if

$$ u_{l}(e,E)=\inf_{p\in E} u_{l}(e,p)=u_{l}(e,p_{0}). $$

If each \(e\in A\) has a best approximation in E, then E is known as a proximinal set.

Denote by \(P(A)\) the set of compact proximinal subsets in A.

As an example, consider \(A=\mathbb{R} ^{+}\cup \{0\}\) and \(u_{l}(e,p)=\frac{1}{l}(e+p)\) for all \(l>0\). Define a set \(E=[4,6]\). Then for each \(y\in A\),

$$ u_{l}(y,E)=u_{l} \bigl(y,[4,6] \bigr)=\inf _{n\in [ 4,6]}u_{l}(y,n)=u_{l}(y,4). $$

Hence, 4 is a best approximation in E for each \(y\in A\). Also, \([4,6]\) is a proximinal set.

Definition 1.4

Let \((A,u)\) be an \(m.l.m\). space. Consider the Pompieu–Hausdorff map \(H_{u_{l}}:P(A)\times P(A)\rightarrow [ 0,\infty )\) defined by

$$ H_{u_{l}}(N,M)=\max \Bigl\{ \sup_{n\in N}u_{l}(n,M), \text{ }\sup_{m\in M}u_{l}(N,m) \Bigr\} , $$

for \(M,N\in P(A)\).

Again, take \(A=\mathbb{R} ^{+}\cup \{0\}\) endowed with \(u_{l}(e,p)=\frac{1}{l}(e+p)\) for all \(l>0\). If \(N= [ 3,5 ]\) and \(R= [ 7,8 ] \), then \(H_{u_{l}}(N,R)=\frac{13}{l}\).

Definition 1.5

([44])

Let \((A,u)\) be an \(m.l.m\). space. Then we will say that u satisfies the \(\triangle _{M}\)-condition if \(\mathbb{N}\lim_{n,m\rightarrow \infty }u_{p}(e_{n},e_{m})=0\) implies \(\lim_{n,m\rightarrow \infty }u_{l}(e_{n},e_{m})=0\), for some \(l>0\).

Definition 1.6

Let A be a nonempty set, \(\xi:A\rightarrow P(A)\) be a set-valued mapping, \(B\subseteq A\), and \(\alpha:A\times A\rightarrow [ 0,+\infty )\). Then ξ is called \(\alpha _{\ast }\)-admissible on B if \(\alpha _{\ast }(\xi a,\xi c)=\inf \{\alpha (u,v):u\in \xi a,v\in \xi c\}\geq 1\), whenever \(\alpha (a,c)\geq 1\) for all \(a,c\in B\).

Definition 1.7

([40])

Let A be a nonempty set, \(\xi:A\rightarrow P(A)\) be a set-valued mapping, \(M\subseteq A\), and \(\alpha:A\times A\rightarrow [ 0,+\infty )\). Then ξ is called \(\alpha _{\ast }\)-dominated on M if for all \(a\in M\), \(\alpha _{\ast }(a,\xi a)=\inf \{\alpha (a,l):l\in \xi a\}\geq 1\).

Example 1.8

([40])

Let \(B=(-\infty,\infty )\). Define \(\gamma:B\times B\rightarrow [ 0,\infty )\) by

$$ \gamma (e,r)= \textstyle\begin{cases} 1&\text{if }e>r, \\ \frac{1}{4}&\text{if }e\ngtr r.\end{cases} $$

Define \(K,L:B\rightarrow P(B)\) by

$$ Ku=[-4+u,-3+u]\quad\text{and}\quad Lr=[-2+r,-1+r]. $$

Then K and L are not \(\gamma _{\ast }\)-admissible, but they are \(\gamma _{\ast }\)-dominated.

Definition 1.9

([51])

Consider a metric space \((M,d)\). A mapping \(G:M\rightarrow M\) is called an R-contraction if for all \(c,k\in M\), there exists \(\tau >0\) such that \(d(Ga,Gc)>0\) implies

$$ \tau +R \bigl( d(Ga,Gc) \bigr) \leq R \bigl( d(a,c) \bigr), $$

where \(R:\mathbb{R} _{+}\rightarrow \mathbb{R} \) is a function satisfying:

(F1) There exists \(k\in (0,1)\) such that \(\lim_{\sigma \rightarrow 0^{+}}\sigma ^{k}R(\sigma )=0\);

(F2) For all \(a,c\in \mathbb{R} _{+}\) such that \(a< c\), we have \(R(a)< R(c)\), that is, R is strictly increasing;

(F3) \(\lim_{n\rightarrow +\infty }\sigma _{n}=0\) if \(\lim_{n\rightarrow +\infty }R(\sigma _{n})=-\infty \), for each sequence \(\{\sigma _{n}\}_{n=1}^{\infty }\) of positive numbers.

The family of all functions satisfying conditions (F1)–(F3) is denoted by Ϝ.

A classical result is as follows:

Lemma 1.10

Let \((Q,u)\) be an \(m.l.m\). space. Let \(C,D\in P(Q)\). Then for each \(e\in C\), there exists \(y_{e}\in D\) such that \(H_{u_{l}}(C,D)\geq u_{l}(e,y_{e})\).

Definition 1.11

([47])

A fuzzy set U is a function from G to \([0,1]\), \(F(G)\) is the family of all fuzzy sets in G. If U is a fuzzy set and \(e\in G\), then \(U(e)\) is called the grade of membership of e in U. For \(\beta \in [0,1]\), the β-level set of a fuzzy set U is denoted by \([U]_{\beta }\), and is defined by

$$\begin{aligned} &[ U]_{\beta } = \bigl\{ e:U(e)\geq \beta \bigr\} \quad\text{where }0< \beta \leq 1, \\ &[ U]_{0} =\overline{ \bigl\{ e:U(e)>0 \bigr\} }. \end{aligned}$$

Now, we select a subset of the family \(F(G)\) of all fuzzy sets, a subfamily with stronger properties, i.e., the subfamily of the approximate quantities, denoted by \(W(G)\).

Definition 1.12

([16])

A fuzzy subset U of G is an approximate quantity if and only if its β-level set is a compact convex subset of G for each \(\beta \in [ 0,1 ] \) and \(\sup_{e\in G}U(e)=1\).

Definition 1.13

([16])

Let R be an arbitrary set and G be a metric space. A fuzzy mapping \(T:R\rightarrow W(G)\) is considered as a fuzzy subset of \(R\times G\), \(T:R\times G\rightarrow [ 0,1]\) in the sense that \(T(c,y)=T(c)(y)\).

Definition 1.14

([47])

A point \(c\in M\) is called a fuzzy fixed point of a fuzzy mapping \(T:M\rightarrow W(M)\) if there exists \(0<\beta \leq 1\) such that \(c\in [ Tc]_{\beta }\).

Definition 1.15

Let A be a nonempty set, \(\xi:A\rightarrow W(A)\) be a fuzzy mapping, \(M\subseteq A\), and \(\alpha:A\times A\rightarrow [ 0,\infty )\). Then ξ is called fuzzy \(\alpha _{\ast }\)-dominated on M, if for all \(a\in M\) and \(0<\beta \leq 1\), we have \(\alpha _{\ast }(a,[\xi a]_{\beta })=\inf \{\alpha (a,l):l\in [ \xi a]_{\beta }\}\geq 1\).

2 Main results

Let \((\Delta,u)\) be an \(m.l.m\). space, \(\vartheta _{0}\in \Delta \), and \(S,T:\Delta \rightarrow W(\Delta )\) be fuzzy mappings on Δ. Moreover, let \(\gamma,\beta:\Delta \rightarrow [ 0,1]\) be two real functions. Let \(\vartheta _{1}\in [ S\vartheta _{0}]_{\gamma (\vartheta _{0})}\) be an element such that \(u_{1}(\vartheta _{0},[S\vartheta _{0}]_{\gamma (\vartheta _{0})})=u_{1}( \vartheta _{0},\vartheta _{1})\). Let \(\vartheta _{2}\in [ T\vartheta _{1}]_{\beta (\vartheta _{1})}\) be such that \(u_{1}(\vartheta _{1},[T\vartheta _{1}]_{\beta (\vartheta _{1})})=u_{1}( \vartheta _{1},\vartheta _{2})\). Let \(\vartheta _{3}\in [ S \vartheta _{2}]_{\gamma (\vartheta _{2})}\) be such that \(u_{1}(\vartheta _{2},[S\vartheta _{2}]_{\gamma (\vartheta _{2})})=u_{1}( \vartheta _{2},\vartheta _{3})\). Continuing this process, we construct a sequence \(\vartheta _{n} \) in Δ such that \(\vartheta _{2n+1}\in [ S\vartheta _{2n}]_{\gamma (\vartheta _{2n})}\) and \(\vartheta _{2n+2}\in [ T\vartheta _{2n+1}]_{\beta (\vartheta _{2n+1})}\), where \(n=0,1,2,\dots \) Also,

$$ u_{1} \bigl(\vartheta _{2n},[S\vartheta _{2}]_{\gamma (\vartheta _{2})} \bigr)=u_{1}( \vartheta _{2n},\vartheta _{2n+1}) $$

and

$$ u_{1} \bigl(\vartheta _{2n+1},[T\vartheta _{2n+1}]_{\beta (\vartheta _{2n+1})} \bigr)=u_{1}( \vartheta _{2n+1},\vartheta _{2n+2}). $$

Note that \(\{TS(\vartheta _{n})\}\) is the notation of this sequence. Then \(\{TS(\vartheta _{n})\}\) is said to be a sequence in Δ generated by \(\vartheta _{0}\).

Definition 2.1

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(\vartheta _{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\), and \(S,T:\Delta \rightarrow W(\Delta )\) be two fuzzy \(\alpha _{\ast }\)-dominated mappings on \(\{TS(\vartheta _{n})\}\). The pair \((S,T)\) is called a rational fuzzy dominated V-contraction, if there exist \(\tau >0\), \(\gamma (\vartheta ),\beta (g)\in (0,1]\) and \(V\in \digamma \) such that

τ + V ( H u 1 ( [ S ϑ ] γ ( ϑ ) , [ T g ] β ( g ) ) ) V ( max { u 1 ( ϑ , g ) , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) , u 2 ( ϑ , [ T g ] β ( g ) ) 2 , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) . u 1 ( g , [ T g ] β ( g ) ) 1 + u 1 ( ϑ , g ) } )
(2.1)

whenever \(\vartheta,g\in \{TS(\vartheta _{n})\}\) so that \(\alpha (\vartheta,g)\geq 1\), and \(H_{u_{1}}([S\vartheta ]_{\gamma (\vartheta )},[Tg]_{\beta (g)})>0\).

Theorem 2.2

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that \(S,T:\Delta \rightarrow W(\Delta )\) are two fuzzy \(\alpha _{\ast }\)-dominated mappings on \(\{TS(\vartheta _{n})\}\). If \((S,T)\) is a rational fuzzy dominated V-contraction, then \(\{TS(\vartheta _{n})\}\) is a Cauchy sequence in Δ and \(\{TS(\vartheta _{n})\}\rightarrow k\in \Delta \).

Proof

As \(S,T:\Delta \rightarrow W(\Delta )\) are two fuzzy \(\alpha _{\ast }\)-dominated mappings on \(\{TS(\vartheta _{n})\}\), so we have \(\alpha _{\ast }(\vartheta _{2i},[S\vartheta _{2i}]_{\gamma (\vartheta _{2i)}})\geq 1\) and \(\alpha _{\ast }(\vartheta _{2i+1},[T\vartheta _{2i+1}]_{\beta (\vartheta _{2i+1})})\geq 1\) for all \(i\in \mathbb{N} \). As \(\alpha _{\ast }(\vartheta _{2i}, [S\vartheta _{2\grave{\imath }}]_{\gamma (\vartheta _{2i)}})\geq 1\), this implies that \(\inf \{\alpha (\vartheta _{2i},b):b\in [ S\vartheta _{2 \grave{\imath }}]_{\gamma (\vartheta _{2i)}}\}\geq 1\), and therefore \(\alpha (\vartheta _{2i}, \vartheta _{2i+1})\geq 1\). Now, by using Lemma 1.10 and Definition 2.1, one writes

τ + V ( u 1 ( ϑ 2 i + 1 , ϑ 2 i + 2 ) ) τ + V ( H u 1 ( [ S ϑ 2 i ] γ ( ϑ 2 i ) , [ T ϑ 2 i + 1 ] β ( ϑ 2 i + 1 ) ) ) V ( max { u 1 ( ϑ 2 i , ϑ 2 i + 1 ) , u 1 ( ϑ 2 i , [ S ϑ 2 i ] γ ( ϑ 2 i ) ) , u 2 ( ϑ 2 i , [ T ϑ 2 i + 1 ] β ( ϑ 2 i + 1 ) ) 2 , u 1 ( ϑ 2 i , [ S ϑ 2 i ] γ ( ϑ 2 i ) ) . u 1 ( ϑ 2 i + 1 , [ T ϑ 2 i + 1 ] β ( ϑ 2 i + 1 ) ) 1 + u 1 ( ϑ 2 i , ϑ 2 i + 1 ) } ) V ( max { u 1 ( ϑ 2 i , ϑ 2 i + 1 ) , u 1 ( ϑ 2 i , ϑ 2 ı ` + 1 ) , u 1 ( ϑ 2 i , ϑ 2 i + 1 ) + u 1 ( ϑ 2 i + 1 , ϑ 2 i + 2 ) 2 , u 1 ( ϑ 2 i , ϑ 2 i + 1 ) . u 1 ( ϑ 2 i + 1 , ϑ 2 i + 2 ) 1 + u 1 ( ϑ 2 i , ϑ 2 i + 1 ) } ) V ( max { u 1 ( ϑ 2 i , ϑ 2 i + 1 ) , u 1 ( ϑ 2 i + 1 , ϑ 2 i + 2 ) } ) .

This implies that

$$ \tau +V \bigl(u_{1}(\vartheta _{2i+1},\vartheta _{2i+2}) \bigr)\leq V \bigl(\max \bigl\{ u_{1} ( \vartheta _{2i},\vartheta _{2i+1} ),u_{1}(\vartheta _{2i+1},\vartheta _{2i+2}) \bigr\} \bigr). $$
(2.2)

If \(\max \{u_{1} ( \vartheta _{2i},\vartheta _{2\grave{\imath }+1} ),u_{1}(\vartheta _{2i+1},\vartheta _{2i+2})\})=u_{1}( \vartheta _{2i+1},\vartheta _{2i+2})\), then from (2.2), we have

$$ V \bigl(u_{1}(\vartheta _{2i+1},\vartheta _{2i+2}) \bigr)\leq V \bigl(u_{1}(\vartheta _{2i+1}, \vartheta _{2i+2}) \bigr)-\tau, $$

a contradiction. Therefore, \(\max \{u_{1} ( \vartheta _{2i},\vartheta _{2i+1} ),u_{1}(\vartheta _{2i+1},\vartheta _{2i+2})\})=u_{1}(\vartheta _{2i},\vartheta _{2i+1})\), for all \(i\in \{0,1,2,\dots \}\). Again, from (2.2), we have

$$ V \bigl(u_{1}(\vartheta _{2i+1},\vartheta _{2i+2}) \bigr)\leq V \bigl(u_{1}(\vartheta _{2i}, \vartheta _{2i+1}) \bigr)-\tau. $$
(2.3)

Similarly, we have

$$ V \bigl(u_{1}(\vartheta _{2i},\vartheta _{2i+1}) \bigr)\leq V \bigl(u_{1}(\vartheta _{2i-1}, \vartheta _{2i}) \bigr)-\tau, $$
(2.4)

for all \(i\in \{0,1,2,\dots \}\). By (2.4) and (2.3), we have

$$ V \bigl(u_{1}(\vartheta _{2i+1},\vartheta _{2i+2}) \bigr)\leq V \bigl(u_{1}(\vartheta _{2i-1}, \vartheta _{2i}) \bigr)-2\tau. $$

Repeating these steps, we get

$$ V \bigl(u_{1}(\vartheta _{2i+1},\vartheta _{2i+2}) \bigr)\leq V \bigl(u_{1}(\vartheta _{0}, \vartheta _{1}) \bigr)-(2i+1)\tau. $$
(2.5)

Similarly, we have

$$ V \bigl(u_{1}(\vartheta _{2i},\vartheta _{2i+1}) \bigr)\leq V \bigl(u_{1}(\vartheta _{0}, \vartheta _{1}) \bigr)-2i\tau. $$
(2.6)

Inequalities (2.5) and (2.6) can jointly be written as

$$ V \bigl(u_{1}(\vartheta _{n},\vartheta _{n+1}) \bigr)\leq V \bigl(u_{1}(\vartheta _{0}, \vartheta _{1}) \bigr)-n\tau. $$
(2.7)

Taking the limit as \(n\rightarrow \infty \) in (2.7), we have

$$ \lim_{n\rightarrow \infty }V \bigl(u_{1}(\vartheta _{n}, \vartheta _{n+1}) \bigr)=- \infty. $$

Since \(F\in \digamma \), one gets

$$ \lim_{n\rightarrow \infty }u_{1}(\vartheta _{n},\vartheta _{n+1})=0. $$
(2.8)

Applying the property \((F1)\) of Ϝ, we have for some \(k\in ( 0,1 ) \),

$$ \lim_{n\rightarrow \infty } \bigl(u_{1}(\vartheta _{n}, \vartheta _{n+1}) \bigr)^{k}(V \bigl(u_{1}( \vartheta _{n},\vartheta _{n+1}) \bigr)=0. $$
(2.9)

By (2.7), we obtain for all \(n\in \mathbb{N} \),

$$ \bigl(u_{1}(\vartheta _{n},\vartheta _{n+1}) \bigr)^{k}( \bigl(V \bigl(u_{1}(\vartheta _{n}, \vartheta _{n+1}) \bigr)-V \bigl(u_{1}(\vartheta _{0},\vartheta _{1}) \bigr) \bigr)\leq - \bigl(u_{1}( \vartheta _{n},\vartheta _{n+1}) \bigr)^{k}n\tau \leq 0. $$
(2.10)

Considering (2.8), (2.9) and letting \(n\rightarrow \infty \) in (2.10), we have

$$ \lim_{n\rightarrow \infty } \bigl(n \bigl(u_{1}(\vartheta _{n},\vartheta _{n+1}) \bigr)^{k} \bigr)=0. $$
(2.11)

Since (2.11) holds, there exists \(n_{1}\in \mathbb{N} \) such that \(n(u_{1}(\vartheta _{n},\vartheta _{n+1}))^{k}\leq 1\) for all \(n\geq n_{1}\), or

$$ u_{1}(\vartheta _{n},\vartheta _{n+1})\leq \frac{1}{n^{\frac{1}{k}}} \quad\text{for all }n\geq n_{1}. $$
(2.12)

Take \(p>0\) and \(m=n+p\) with \(n>n_{1}\). Then

$$\begin{aligned} u_{p}(\vartheta _{n},\vartheta _{m}) &\leq u_{1}(\vartheta _{n}, \vartheta _{n+1})+u_{1}( \vartheta _{n+1},\vartheta _{n+2})+\cdots +u_{1}( \vartheta _{m-1},\vartheta _{m}) \\ &\leq \frac{1}{n^{\frac{1}{k}}}+\frac{1}{(n+1)^{\frac{1}{k}}}+ \cdots +\frac{1}{ ( m-1 ) ^{\frac{1}{k}}} \\ &\leq \sum_{i=n}^{\infty }\frac{1}{i^{\frac{1}{k}}}. \end{aligned}$$

If \(k\in ( 0,1 ) \), then \(\frac{1}{k}>1\), so the last term is the remainder of a convergent series. Hence, taking the limit as \(n,m\rightarrow \infty \), we have

$$ \lim_{n,m\rightarrow \infty } u_{p}(\vartheta _{n}, \vartheta _{m})=0. $$
(2.13)

Since u satisfies the \(\triangle _{M}\)-condition, we have

$$ \lim_{n,m\rightarrow \infty } u_{1}(\vartheta _{n}, \vartheta _{m})=0. $$
(2.14)

Hence, \(\{TS(\vartheta _{n})\}\) is a Cauchy sequence in Δ. Since \((\Delta,u)\) is a regular complete modular-like metric space, there exists \(k\in \Delta \) such that \(\{TS(\vartheta _{n})\}\rightarrow k\) as \(n\rightarrow \infty \). □

Theorem 2.3

Let \((\Delta,u)\) be a complete \(m.l.m \). space. Assume that \(S,T:\Delta \rightarrow W(\Delta )\) are two fuzzy \(\alpha _{\ast }\)-dominated mappings on \(\{TS(\vartheta _{n})\}\). Suppose that \((S,T) \) is a rational fuzzy dominated V-contraction and k satisfies (2.1), where k is the limit of the sequence \(\{TS(\vartheta _{n})\}\). Also, \(\alpha (\vartheta _{n},k)\geq 1\) and \(\alpha (k,\vartheta _{n})\geq 1\) for all \(n\in \{0,1,2,\dots \}\). Then k belongs to both \([Tk]_{\beta (k)}\) and \([Sk]_{\gamma (k)}\).

Proof

As \((S,T)\) is a rational fuzzy dominated V-contraction, then by Theorem 2.2, there exists \(k\in \Delta \) such that \(\{TS(\vartheta _{n})\}\rightarrow k\) as \(n\rightarrow \infty \) and so

$$ \lim_{n\rightarrow \infty }u_{1}(\vartheta _{n},k)=u_{1}(k,k)= \lim_{n,m \rightarrow \infty }u_{1}(\vartheta _{n},\vartheta _{m})=0. $$
(2.15)

Now, by Lemma 1.10, we have

$$ \tau +V(u_{1} \bigl(\vartheta _{2n+1},[Tk]_{\beta (k)} \bigr)\leq \tau +V(H_{u_{1}} \bigl([S \vartheta _{2n}]_{(\gamma _{\vartheta _{2n}})},[Tk]_{\beta (k)} \bigr). $$
(2.16)

By assumption, \(\alpha (\vartheta _{n},k)\geq 1\). Assume that \(u_{1}(k,[Tk]_{\beta (k)})>0\), then there must be a positive natural number p so that \(u_{1}(\vartheta _{2n+1},[Tk]_{\beta (k)})>0\), for every \(n\geq p\). Now \(H_{u_{1}}([S\vartheta _{2n}]_{(\gamma _{\vartheta _{2n}})}, [Tk]_{ \beta (k)})>0\), so inequality (2.1) implies for every \(n\geq p\) that

τ + V ( u 1 ( ϑ 2 n + 1 , [ T k ] β ( k ) ) V ( max { u 1 ( ϑ 2 n , k ) , u 1 ( ϑ 2 n , [ S ϑ 2 n ] γ ( ϑ 2 n ) ) , u 1 ( ϑ 2 n , ϑ 2 n + 1 ) + u 1 ( ϑ 2 n + 1 , [ T k ] β ( k ) ) 2 , u 1 ( ϑ 2 n , [ S ϑ 2 n ] γ ( ϑ 2 n ) ) . u 1 ( k , [ T k ] β ( k ) ) 1 + u 1 ( ϑ 2 n , k ) } ) .

Letting \(n\rightarrow \infty \) and using (2.15), we get

$$ \tau +V \bigl(u_{1} \bigl(k,[Tk]_{\beta (k)} \bigr) \bigr)\leq V \biggl( \frac{u_{1}(k,[Tk]_{\beta (k)})}{2} \biggr)\leq V \bigl(u_{1} \bigl(k,[Tk]_{\beta (k)} \bigr) \bigr). $$

Since V is strictly increasing, (2.16) implies

$$ u_{1} \bigl(k,[Tk]_{\beta (k)} \bigr)< u_{1} \bigl(k,[Tk]_{\beta (k)} \bigr). $$

This is not true. So our assumption is wrong. Hence, \(u_{1}(k,[Tk]_{\beta (k)})=0\) or \(k\in [ Tk]_{\beta (k)}\). Similarly, by applying Lemma 1.10 and inequality (2.1), we can prove that \(u_{1}(k,[Sk]_{\gamma (k)})=0\) or \(k\in [ Sk]_{\gamma (k)}\). Hence, S and T have a common fuzzy fixed point k in Δ. □

Definition 2.4

Let Δ be a nonempty set, be a partial order on Δ, and \(B\subseteq \Delta \). We say that \(a\preceq B\), whenever for all \(b\in B\), we have \(a\preceq b\). A mapping \(S:\Delta \rightarrow W(\Delta )\) is said to be fuzzy -dominated on B if \(a\preceq [ Sa]_{\gamma }\) for each \(a\in \Delta \) and \(\gamma \in (0,1]\).

We have the following result for multi-fuzzy -dominated mappings on \(\{TS(\vartheta _{n})\}\) in an ordered complete \(m.l.m\). space.

Theorem 2.5

Let \((\Delta,\preceq,u)\) be an ordered complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(\vartheta _{0}\in \Delta \) and \(S,T:\Delta \rightarrow W(\Delta )\) be fuzzy dominated mappings on \(\{TS(\vartheta _{n})\}\). Suppose there exist \(\tau >0\), \(\gamma (\vartheta ),\beta (g)\in (0,1]\) and \(V\in \digamma \) such that the following holds:

τ + V ( H u 1 ( [ S ϑ ] γ ( ϑ ) , [ T g ] β ( g ) ) ) V ( max u 1 ( ϑ , g ) , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) , u 2 ( ϑ , [ T g ] β ( g ) ) 2 , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) . u 1 ( g , [ T g ] β ( g ) ) 1 + u 1 ( ϑ , g ) )
(2.17)

whenever \(\vartheta,g\in \{TS(\vartheta _{n})\}\), with either \(\vartheta \preceq g\) or \(g\preceq \vartheta \), and \(H_{u_{1}}([S\vartheta ]_{\gamma (\vartheta )},[Tg]_{\beta (g)})>0\).

Then \(\{TS(\vartheta _{n})\}\rightarrow k\in \Delta \). Also, if (2.17) holds for k, \(\vartheta _{n}\preceq k\) and \(k\preceq \vartheta _{n}\) for all \(n\in \{0,1,2,\dots \}\), then k belongs to both \([Tk]_{\beta (k)}\) and \([Sk]_{\gamma (k)}\).

Proof

Let \(\alpha:\Delta \times \Delta \rightarrow [ 0,+\infty )\) be a mapping defined by \(\alpha (\vartheta,g)=1\) for all \(\vartheta \in \Delta \) with \(\vartheta \preceq g\), and \(\alpha (\vartheta,g)=0\) for all other elements \(\vartheta,g\in \Delta \). Since S and T are the fuzzy prevalent mappings on Δ, \(\vartheta \preceq [ S\vartheta ]_{\gamma (\vartheta )}\) and \(\vartheta \preceq [ T\vartheta ]_{\beta (\vartheta )}\) for all \(\vartheta \in \Delta \). It yields that \(\vartheta \preceq b\) for all \(b\in [ S\vartheta ]_{\gamma (\vartheta )}\) and \(\vartheta \preceq e\) for all \(\vartheta \in [ T\vartheta ]_{\beta (\vartheta )}\). So, \(\alpha (\vartheta,b)=1\) for all \(b\in [ S\vartheta ]_{\gamma (\vartheta )}\) and \(\alpha (\vartheta,e)=1\) for all \(\vartheta \in [ T\vartheta ]_{\beta (\vartheta )}\). This implies that \(\inf \{\alpha (\vartheta,g):g\in [ S\vartheta ]_{\gamma ( \vartheta )}\}=1\) and \(\inf \{\alpha (\vartheta,g):g\in [ T\vartheta ]_{\beta ( \vartheta )}\}=1\). Hence, \(\alpha _{\ast }(\vartheta,[S\vartheta ]_{\alpha (\vartheta )})=1\), \(\alpha _{\ast }(\vartheta,[T\vartheta ]_{\beta (\vartheta )})=1\) for all \(\vartheta \in \Delta \). So, \(S,T:\Delta \rightarrow W(\Delta )\) are \(\alpha _{\ast }\)-dominated mappings on Δ. Moreover, inequality (2.17) holds and it can be written as

$$ \tau +V \bigl(H_{u_{1}} \bigl([S\vartheta ]_{\gamma (\vartheta )},[Tg]_{\beta (g)} \bigr) \bigr) \leq V \bigl(u_{l}(\vartheta,g) \bigr), $$

for all elements \(\vartheta,g\) in \(\{TS(\vartheta _{n})\}\), with either \(\alpha (\vartheta,g)\geq 1\) or \(\alpha (g,\vartheta )\geq 1\). Then, by Theorem 2.2, \(\{TS(\vartheta _{n})\}\) is a sequence in Δ and \(\{TS(\vartheta _{n})\}\rightarrow \vartheta ^{\ast }\in \Delta \). Now, \(\vartheta _{n},\vartheta ^{\ast }\in \Delta \) and either \(\vartheta _{n}\preceq \vartheta ^{\ast }\), or \(\vartheta ^{\ast }\preceq \vartheta _{n} \) implies that either \(\alpha (\vartheta _{n},\vartheta ^{\ast })\geq 1\) or \(\alpha (\vartheta ^{\ast },\vartheta _{n})\geq 1\). So, all the requirements of Theorem 2.3 are satisfied. Hence, \(\vartheta ^{\ast }\) is the common fuzzy fixed point of both S and T in Δ and \(u_{l}(\vartheta ^{\ast },\vartheta ^{\ast })=0\). □

Example 2.6

Let \(\Delta =Q^{+}\cup \{0\}\) and \(u_{l}(e,\vartheta )=\frac{1}{l}(e+\vartheta )\). Now, \(u_{2}(e,\vartheta )=\frac{1}{2}(e+\vartheta )\) and \(u_{1}(e,\vartheta )=e+\vartheta \) for all \(e,\vartheta \in \Delta \). Define \(S,T:\Delta \rightarrow W(\Delta )\) by

$$ ( Se ) ( t ) =\textstyle\begin{cases} \gamma &\text{if }\frac{g}{4}\leq t< \frac{g}{2}, \\ \frac{\gamma }{2}&\text{if }\frac{g}{2}\leq t\leq \frac{3g}{4}, \\ \frac{\gamma }{4}&\text{if }\frac{3g}{4}< t\leq g, \\ 0&\text{if }g< t< \infty \end{cases} $$

and

$$ ( T\vartheta ) ( t ) =\textstyle\begin{cases} \beta& \text{if }\frac{g}{3}\leq t< \frac{g}{2}, \\ \frac{\beta }{4}&\text{if }\frac{g}{2}\leq t\leq \frac{2g}{3}, \\ \frac{\beta }{6}&\text{if }\frac{2g}{3}< t\leq g, \\ 0&\text{if }g< t< \infty. \end{cases} $$

Now, we consider

$$ [ Se ] _{\frac{\gamma }{2}}= \biggl[ \frac{e}{4}, \frac{3e}{4} \biggr] \quad\text{and}\quad [ T\vartheta ] _{ \frac{\beta }{4}}= \biggl[ \frac{\vartheta }{3}, \frac{2\vartheta }{3} \biggr]. $$

Taking \(e_{0}=\frac{1}{2}\), we have \(u_{1}(e_{0}, [ Se_{0} ] _{\frac{\gamma }{2}})=u_{1}(\frac{1}{2}, [ \frac{1}{8},\frac{3}{8} ] )=u_{1}(\frac{1}{2},\frac{1}{8})\). So, we obtain a sequence \(\{TS(e_{n})\}=\{\frac{1}{2},\frac{1}{8},\frac{1}{24},\frac{1}{96},\dots \}\) in Δ generated by \(e_{0}\). Let

$$ \alpha (e,\vartheta )=\textstyle\begin{cases} 1&\text{if }e,\vartheta \in \Delta, \\ \frac{1}{2}&\text{otherwise}.\end{cases} $$

Now, for all \(e,\vartheta \in \{TS(e_{n})\}\) with either \(\alpha (e,\vartheta )\geq 1\) or \(\alpha (\vartheta,e)\geq 1\), we have

$$\begin{aligned} H_{u_{1}} \bigl( [ Se ] _{\frac{\gamma }{2}}, [ T\vartheta ] _{\frac{\beta }{4}} \bigr) &=\max \Bigl\{ \sup_{a\in [ Se ] _{ \frac{\gamma }{2}}}u_{1} \bigl( a, [ T \vartheta ] _{ \frac{\beta }{4}} \bigr),\sup_{b\in [ T\vartheta ] _{ \frac{\beta }{4}}}u_{1} \bigl( [ Se ] _{\frac{\gamma }{2}},b \bigr) \Bigr\} \\ &=\max \biggl\{ \sup_{a\in [ \frac{e}{4},\frac{3e}{4} ] }u_{1} \biggl( a, \biggl[ \frac{\vartheta }{3},\frac{2\vartheta }{3} \biggr] \biggr),\sup _{b\in [ \frac{\vartheta }{3}, \frac{2\vartheta }{3} ] }u_{1} \biggl( \biggl[ \frac{e}{4}, \frac{3e}{4} \biggr],b \biggr) \biggr\} \\ &=\max \biggl\{ u_{1} \biggl( \frac{3e}{4}, \biggl[ \frac{\vartheta }{3},\frac{2\vartheta }{3} \biggr] \biggr),u_{1} \biggl( \biggl[ \frac{e}{4}, \frac{3e}{4} \biggr], \frac{2\vartheta }{3} \biggr) \biggr\} \\ &=\max \biggl\{ u_{1} \biggl( \frac{3e}{4},\frac{\vartheta }{3} \biggr),u_{1} \biggl( \frac{e}{4},\frac{2\vartheta }{3} \biggr) \biggr\} \\ &=\max \biggl\{ \frac{3e}{4}+\frac{\vartheta }{3},\frac{e}{4}+ \frac{2\vartheta }{3} \biggr\} . \end{aligned}$$

Now,

max { u 1 ( e , ϑ ) , u 1 ( e , [ S e ] γ ( e ) ) , u 2 ( e , [ T ϑ ] β ( ϑ ) ) 2 , u 1 ( e , [ S e ] γ ( e ) ) . u 1 ( ϑ , [ T ϑ ] β ( ϑ ) ) 1 + u 1 ( e , ϑ ) } = max { ( e + ϑ ) , ( e + e 4 ) , 1 2 ( e + ϑ 3 ) , ( e + e 4 ) . ( ϑ + ϑ 3 ) 1 + ( e + ϑ ) } = e + ϑ .

Case i. If \(\max \{ ( \frac{3e}{4}+\frac{\vartheta }{3} ), ( \frac{e}{4}+\frac{2\vartheta }{3} ) \} = ( \frac{3e}{4}+\frac{\vartheta }{3} ) \) and \(\tau =\ln (1.2)\), then we have

$$\begin{aligned} &\frac{9e}{2}+2\vartheta \leq 5e+5\vartheta, \\ &\frac{6}{5} \biggl( \frac{3e}{4}+\frac{\vartheta }{3} \biggr) \leq e+ \vartheta, \\ &\ln (1.2)+\ln \biggl( \frac{3e}{4}+\frac{\vartheta }{3} \biggr) \leq \ln (e+\vartheta ). \end{aligned}$$

This implies that

τ+V ( H u 1 ( [ S e ] γ 2 , [ T ϑ ] β 4 ) ) V ( max { u 1 ( e , ϑ ) , u 1 ( e , [ S e ] γ ( e ) ) , u 2 ( e , [ T ϑ ] β ( ϑ ) ) 2 , u 1 ( e , [ S e ] γ ( e ) ) . u 1 ( ϑ , [ T ϑ ] β ( ϑ ) ) 1 + u 1 ( e , ϑ ) } ) .

Case ii. If \(\max \{ ( \frac{3e}{4}+\frac{\vartheta }{3} ), ( \frac{e}{4}+\frac{2\vartheta }{3} ) \} = ( \frac{e}{4}+\frac{2\vartheta }{3} ) \) and \(\tau =\ln (1.2)\), then we have

$$\begin{aligned} &\frac{3e}{2}+4\vartheta \leq 5e+5\vartheta, \\ &\frac{6}{5} \biggl( \frac{e}{4}+\frac{2\vartheta }{3} \biggr) \leq e+ \vartheta, \\ &\ln (1.2)+\ln \biggl( \frac{e}{4}+\frac{2\vartheta }{3} \biggr) \leq \ln (e+\vartheta ). \end{aligned}$$

This implies that

τ+V ( H u 1 ( [ S e ] γ 2 , [ T ϑ ] β 4 ) ) V ( max { u 1 ( e , ϑ ) , u 1 ( e , [ S e ] γ ( e ) ) , u 2 ( e , [ T ϑ ] β ( ϑ ) ) 2 , u 1 ( e , [ S e ] γ ( e ) ) . u 1 ( ϑ , [ T ϑ ] β ( ϑ ) ) 1 + u 1 ( e , ϑ ) } ) .

Hence, all the conditions of Theorem 2.3 are satisfied and so the existence of a common fuzzy fixed point is ensured.

If we take \(S=T\) in Theorem 2.3, we obtain the following result.

Corollary 2.7

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(\vartheta _{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\), and \(S:\Delta \rightarrow W(\Delta )\) be a fuzzy \(\alpha _{\ast }\)-dominated mapping on \(\{SS(\vartheta _{n})\}\). Suppose there exist \(\tau >0\), \(\gamma (\vartheta ),\beta (g)\in (0,1]\), and \(V\in \digamma \) such that

τ + V ( H u 1 ( [ S ϑ ] γ ( ϑ ) , [ S g ] β ( g ) ) ) V ( max { u 1 ( ϑ , g ) , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) , u 2 ( e , [ S g ] β ( g ) ) 2 , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) . u 1 ( g , [ S g ] β ( g ) ) 1 + u 1 ( ϑ , g ) } )
(2.18)

whenever \(\vartheta,g\in \{SS(\vartheta _{n})\}\), \(\alpha (\vartheta,g)\geq 1\), and \(H_{u_{1}}([S\vartheta ]_{\gamma (\vartheta )},[Sg]_{\beta (g)})>0\).

Then, \(\alpha (\vartheta _{n},\vartheta _{n+1})\geq 1\) for all \(n\in \{0,1,2,\dots \}\) and \(\{SS(\vartheta _{n})\}\rightarrow k\in \Delta \). Also, if k satisfies (2.18) and either \(\alpha (\vartheta _{n},k)\geq 1\) or \(\alpha (k,\vartheta _{n})\geq 1\) for all \(n\in \{0,1,2,\dots \}\), then \(k\in [ k]_{\gamma (k)}\).

If we take in Theorem 2.3, multivalued \(\alpha _{\ast }\)-dominated mappings from a ground set Δ to the proximinal subsets of Δ instead of fuzzy \(\alpha _{\ast }\)-dominated mappings from Δ to the approximate quantities \(W(\Delta )\), we obtain the following result.

Corollary 2.8

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(\vartheta _{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\) and \(S,T:\Delta \rightarrow W(\Delta ) \) are two multivalued \(\alpha _{\ast }\)-dominated mappings on \(\{TS(\vartheta _{n})\}\). Suppose there exist \(\tau >0\) and \(V\in \digamma \) such that

τ+V ( H u 1 ( S ϑ , T g ) ) V ( max { u 1 ( ϑ , g ) , u 1 ( ϑ , S ϑ ) , u 2 ( ϑ , T g ) 2 , u 1 ( ϑ , S ϑ ) . u 1 ( g , T g ) 1 + u 1 ( ϑ , g ) } )
(2.19)

whenever \(\vartheta,g\in \{TS(\vartheta _{n})\}\), \(\alpha (\vartheta,g)\geq 1\), and \(H_{u_{1}}(S\vartheta,Tg)>0\).

Then, \(\alpha (\vartheta _{n},\vartheta _{n+1})\geq 1\) for all \(n\in \{0,1,2,\dots \}\) and \(\{TS(\vartheta _{n})\}\rightarrow k\in \Delta \). Also, if k satisfies (2.19) and either \(\alpha (\vartheta _{n},k)\geq 1\) or \(\alpha (k,\vartheta _{n})\geq 1\) for all \(n\in \{0,1,2,\dots \}\), then k belongs to both Tk and Sk.

If we take \(S=T\) in Corollary 2.8, we obtain the following result.

Corollary 2.9

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(\vartheta _{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\) and \(S:\Delta \rightarrow W(\Delta )\) be a multivalued \(\alpha _{\ast }\)-dominated mapping on \(\{SS(\vartheta _{n})\}\). Suppose there exist \(\tau >0\) and \(V\in \digamma \) such that

τ+V ( H u 1 ( S ϑ , S g ) ) V ( max { u 1 ( ϑ , g ) , u 1 ( ϑ , S ϑ ) , u 2 ( ϑ , S g ) 2 , u 1 ( ϑ , S ϑ ) . u 1 ( g , S g ) 1 + u 1 ( ϑ , g ) } )
(2.20)

whenever \(\vartheta,g\in \{(\vartheta _{n})\},\alpha (\vartheta,g)\geq 1\), and \(H_{u_{1}}(S\vartheta,Sg)>0\).

Then, \(\alpha (\vartheta _{n},\vartheta _{n+1})\geq 1\) for all \(n\in \{0,1,2,\dots \}\) and \(\{S(\vartheta _{n})\}\rightarrow k\in \Delta \). Also, if k satisfies (2.20) and either \(\alpha (\vartheta _{n},k)\geq 1\) or \(\alpha (k,\vartheta _{n})\geq 1\) for all \(n\in \{0,1,2,\dots \}\), then k belongs to Sk.

3 Applications in graph theory

Jachymski [21] developed a relation between fixed point theory and graph theory by introducing graphic contractions. Hussain et al. [19] established some results for a new type of contraction endowed with a graph. Let A be a nonempty set, \(V(Y)\) and \(L(Y)\) denote the set of vertices and the set of edges containing all loops, respectively, for a graph Y.

Definition 3.1

Let A be a nonempty set and \(Y=(V(Y),L(Y))\) be a graph with \(V(Y)=A\). A fuzzy mapping F from A to \(W(A)\) is known as a fuzzy-graph dominated mapping on A if \((a,b)\in L(Y)\), whenever \(a\in A\), \(b\in [ Fa]_{\beta }\) and \(0<\beta \leq 1\).

Theorem 3.2

Let \((\Delta,u)\) be a complete \(m.l.m\). space endowed with a graph Y, \(\vartheta _{0}\in \Delta \), and the following hold:

  1. (i)

    \(S,T:\Delta \rightarrow W(\Delta )\) are fuzzy-graph dominated functions on \(\{TS(\vartheta _{n})\}\).

  2. (ii)

    There exist \(\tau >0\), \(\gamma (\vartheta ),\beta (y)\in (0,1]\), and \(V\in \digamma \) such that

    τ + V ( H u 1 ( [ S ϑ ] γ ( ϑ ) , [ T y ] β ( y ) ) ) V ( max { u 1 ( ϑ , y ) , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) , u 2 ( ϑ , [ T y ] β ( y ) ) 2 , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) . u 1 ( y , [ T y ] β ( y ) ) 1 + u 1 ( ϑ , y ) } ) ,
    (3.1)

    whenever \(t,y\in \{TS(\vartheta _{n})\}\), \((\vartheta _{,}y)\in L(Y)\), and \(H_{u_{1}}([S\vartheta ]_{\gamma (\vartheta )},[Ty]_{\beta (y)})>0\).

Assume that Δ is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Then \((\vartheta _{n},\vartheta _{n+1})\in L(Y)\) and \(\{TS(\vartheta _{n})\}\rightarrow k^{\ast }\). Also, if \(k^{\ast }\) satisfies (3.1) and \((\vartheta _{n},k^{\ast })\in L(Y)\) or \((k^{\ast },\vartheta _{n})\in L(Y)\) for each \(n\in \{0,1,2,\dots \}\), then \(k^{\ast }\) belongs to both \([Tk^{\ast }]_{\beta (k^{\ast })}\) and \(k\in [ Sk^{\ast }]_{\gamma (k^{\ast })}\).

Proof

Define \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\) by \(\alpha (\vartheta,y)=1\), if \(\vartheta \in \Delta \) and \((\vartheta,y)\in L(Y)\). Otherwise, set \(\alpha (\vartheta,y)=0\). By definition of graph domination on Δ, we have \((\vartheta,y)\in L(Y)\) for all \(y\in [ S\vartheta ]_{\gamma (\vartheta )}\) and \((\vartheta,y)\in L(Y)\) for each \(y\in [ Ty]_{\beta (y)}\). So, \(\alpha (\vartheta,y)=1\) for all \(y\in [ S\vartheta ]_{\gamma (\vartheta )}\) and \(\alpha (\vartheta,y)=1 \) for every \(y\in [ Ty]_{\beta (y)}\). This means that \(\inf \{\alpha (\vartheta,y):y\in [ S\vartheta ]_{\gamma ( \vartheta )}\}=1\) and \(\inf \{\alpha (\vartheta,y):y\in [ Ty]_{\beta (y)}\}=1\). Hence, \(\alpha _{\ast }(\vartheta,[S\vartheta ]_{\gamma (\vartheta )})=1\), \(\alpha _{\ast }(\vartheta,[Ty]_{\beta (y)})=1\) for every \(\vartheta \in \Delta \). So, the pair of mappings are \(\alpha _{\ast }\)-dominated on Δ. Furthermore, inequality (3.1) can be expressed as

τ+V ( H u 1 ( [ S ϑ ] γ ( ϑ ) , [ T y ] β ( y ) ) ) V ( max { u 1 ( ϑ , y ) , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) , u 2 ( ϑ , [ T y ] β ( y ) ) 2 , u 1 ( ϑ , [ S ϑ ] γ ( ϑ ) ) . u 1 ( y , [ T y ] β ( y ) ) 1 + u 1 ( ϑ , y ) } ) ,

whenever \(\vartheta,y\in \{TS(\vartheta _{n})\}\) with \(\alpha (\vartheta,y)\geq 1\) and \(H_{u_{1}}([S\vartheta ]_{\gamma (\vartheta )},[Ty]_{\beta (y)})>0\). Also, (ii) holds. Then, by Theorem 2.2, \(\{TS(\vartheta _{n})\}\) is a sequence in Δ and \(\{TS(\vartheta _{n})\}\rightarrow k^{\ast }\in \Delta \). Now, \(\vartheta _{n},k^{\ast }\in \Delta \) and either \((\vartheta _{n},k^{\ast })\in L(Y)\) or \((k^{\ast },\vartheta _{n})\in L(Y)\) implies that either \(\alpha (\vartheta _{n},k^{\ast })\geq 1\) or \(\alpha (k^{\ast },\vartheta _{n})\geq 1\). So, all the requirements of Theorem 2.2 are satisfied. Hence, \(k^{\ast }\) belongs to both \([Tk^{\ast }]_{\beta (k^{\ast })}\) and \(k\in [ Sk^{\ast }]_{\gamma (k^{\ast })}\). □

4 Results for single-valued mappings

In this section, some consequences of our results related to single-valued mappings in \(m.l.m\). spaces are discussed. Let \((\Delta,u)\) be an \(m.l.m\). space, \(g_{0}\in \Delta \), and \(S,T:\Delta \rightarrow \Delta \) be a pair of multivalued mappings. Let \(g_{1}=Sg_{0}\), \(g_{2}=Tg_{1}\), and \(g_{3}=Sg_{2}\). Similarly, we make a sequence \(g_{n}\) in Δ so that \(g_{2n+1}=Sg_{2n}\) and \(g_{2n+2}=Tg_{2n+1}\), where \(n=0,1,2,\dots \) We represent this kind of iterative sequence by \(\{TS(g_{n})\}\). We say that \(\{TS(g_{n})\}\) is a sequence in Δ generated by \(g_{0}\).

Theorem 4.1

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(r>0\), \(g_{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\), and \(S,T:\Delta \rightarrow \Delta \) be α-dominated functions on \(\{TS(g_{n})\}\). Suppose that there exist \(\tau >0\) and \(V\in \digamma \) such that

τ + V ( u 1 ( S t , T g ) ) V ( max { u 1 ( t , g ) , u 1 ( t , S t ) , u 2 ( t , T g ) 2 , u 1 ( t , S t ) . u 1 ( g , T g ) 1 + u 1 ( t , g ) } ) ,
(4.1)

whenever \(t,g\in \{TS(g_{n})\}\) with \(\alpha (t,g)\geq 1\) and \(u_{1}(St,Tg)>0\).

Then \(\alpha (g_{n},g_{n+1})\geq 1\) for each \(n\in \mathbb{N} \cup \{0\}\) and \(\{TS(g_{n})\}\rightarrow h\in \Delta \). Also, if h satisfies (4.1) and either \(\alpha (g_{n},h)\geq 1\) or \(\alpha (h,g_{n})\geq 1\) for all \(n\in \mathbb{N} \cup \{0\}\), then S and T have a common fixed point h in Δ.

If we take \(S=T\) in Theorem 4.1, then we get the following result.

Corollary 4.2

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(g_{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\) and \(S:\Delta \rightarrow \Delta \) be an α-dominated function on \(\{SS(g_{n})\}\). Suppose that there exist \(\tau >0\) and \(V\in \digamma \) such that

τ + V ( u 1 ( S t , S g ) ) V ( max { u 1 ( t , g ) , u 1 ( t , S t ) , u 2 ( t , S g ) 2 , u 1 ( t , S t ) . u 1 ( g , S g ) 1 + u 1 ( t , g ) } ) ,
(4.2)

whenever \(t,g\in \{SS(g_{n})\}\) with \(\alpha (t,g)\geq 1\) and \(u_{1}(St,Sg)>0\). Then \(\alpha (g_{n},g_{n+1})\geq 1\) for each \(n\in \mathbb{N} \cup \{0\}\) and \(\{SS(g_{n})\}\rightarrow h\in \Delta \). Also, if h satisfies (4.2) and either \(\alpha (g_{n},h)\geq 1\) or \(\alpha (h,g_{n})\geq 1\) for each \(n\in \mathbb{N} \cup \{0\}\), then h is the fixed point of S.

Corollary 4.3

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(r>0\), \(g_{0}\in \Delta \), \(\alpha:\Delta \times \Delta \rightarrow [ 0,\infty )\), and \(S,T:\Delta \rightarrow \Delta \) be α-dominated functions on \(\{TS(g_{n})\}\). Suppose that there exists \(k\in ( 0,1 )\) such that

$$ u_{1}(St,Tg)\leq ku_{1}(t,g), $$
(4.3)

whenever \(t,g\in \{TS(g_{n})\}\), \(\alpha (t,g)\geq 1\), and \(u_{1}(St,Tg)>0\).

Then \(\alpha (g_{n},g_{n+1})\geq 1\) for each \(n\in \mathbb{N} \cup \{0\}\) and \(\{TS(g_{n})\}\rightarrow h\in \Delta \). Also, if h satisfies (4.3) and either \(\alpha (g_{n},h)\geq 1\) or \(\alpha (h,g_{n})\geq 1\) for all \(n\in \mathbb{N} \cup \{0\}\), then S and T have a common fixed point h in Δ.

Remark 4.4

If we impose the Banach condition

$$ w(St,Tg)\leq ku_{1}(t,g) \quad\text{for all }t,g\in \Delta, $$

for a pair \(S,T:\Delta \rightarrow \Delta \) of mappings on a regular modular metric space \(( \Delta,w ) \), then it follows that \(Sg=Tg\), for all \(g\in \Delta \) (that is, S and T are equal). Therefore, the above condition fails to find common fixed points of S and T. However, the same condition in \(m.l.m\). spaces does not assert that \(S=T\).

5 Application on nonlinear Volterra-type integral equations

In this section, we discuss the application of our work to integral equations. First of all, we present our main result without \(\alpha _{\ast }\)-dominated functions for self-mappings and then apply it to attain an application on integral equations.

Theorem 5.1

Let \((\Delta,u)\) be a complete \(m.l.m\). space. Assume that u is regular and satisfies the \(\bigtriangleup _{M}\)-condition. Let \(g_{0}\in \Delta \) and \(S,T:\Delta \rightarrow \Delta \) be self-mappings. If there exist \(\tau >0\) and \(V\in \digamma \) such that

τ + V ( u 1 ( S t , T g ) ) V ( max { u 1 ( t , g ) , u 1 ( t , S t ) , u 2 ( t , T g ) 2 , u 1 ( t , S t ) . u 1 ( g , T g ) 1 + u 1 ( t , g ) } ) ,
(5.1)

whenever \(t,g\in \{TS(g_{n})\}\) and \(u_{1}(St,Tg)>0\), then \(\{TS(g_{n})\}\rightarrow h\in \Delta \). Also, if inequality (5.1) holds for \(t,g\in \{h\}\), then S and T have a common fixed point h in Δ.

Let \(X=C([0,1],\mathbb{R} _{+})\) be the set of all continuous nonnegative functions on \([0,1]\). Consider the nonlinear Volterra-type integral equations

$$\begin{aligned} &u(k)= \int _{0}^{k}H \bigl(k,h,u(h) \bigr)\,dh, \end{aligned}$$
(5.2)
$$\begin{aligned} &g(k)= \int _{0}^{k}G \bigl(k,h,g(h) \bigr)\,dh, \end{aligned}$$
(5.3)

for all \(k\in [ 0,1]\), and suppose \(H,G\) are the functions from \([0,1]\times [ 0,1]\times X\) to \(\mathbb{R} \). For \(g\in C([0,1],\mathbb{R} _{+})\), define the supremum norm as \(\Vert g\Vert _{\tau }=\sup_{k\in [ 0,1]}\{ \vert g(k) \vert e^{-\eta k}\}\), where \(\eta >0\) is arbitrarily taken. Define

$$\begin{aligned} u_{l}(g,p) &=\frac{1}{l+1}\sup_{k\in [ 0,1]} \bigl\{ \bigl\vert g(k)+p(k) \bigr\vert \bigr\} e^{-\tau k} \\ &=\frac{1}{l+1} \Vert g+p \Vert _{\tau } \end{aligned}$$

for all \(g,p\in C([0,1],\mathbb{R} _{+})\). With these settings, \((C([0,1],\mathbb{R} _{+}),d_{\tau })\) becomes a complete \(m.l.m\). space.

Now, we prove the following theorem to ensure the existence and uniqueness of a solution of families of the nonlinear integral equations (5.2) and (5.3).

Theorem 5.2

Assume that the following conditions are satisfied:

  1. (i)

    H and G are two functions from \([0,1]\times [ 0,1]\times C([0,1],\mathbb{R} _{+})\) to \(\mathbb{R} \);

  2. (ii)

    Define

    $$\begin{aligned} &(Su) (k) = \int _{0}^{k}H \bigl(k,h,u(h) \bigr)\,dh, \\ &(Tg) (k) = \int _{0}^{k}G \bigl(k,h,g(h) \bigr)\,dh. \end{aligned}$$

    Suppose there exists \(\tau >0\) such that

    $$ \bigl\vert H(k,h,u)+G(k,h,g) \bigr\vert \leq \frac{2\tau e^{\tau h}E(u,g)}{ ( \tau \sqrt{E(u,g)}+1 ) ^{2}}, $$

    for all \(k,h\in [ 0,1]\) and \(u,g\in C([0,1],\mathbb{R} ^{+})\), where

    E(u,g)=max { 1 2 u + g τ , 1 2 u + S u τ , 1 3 u + T g τ , 1 4 u + S u τ . g + T g τ 1 + 1 2 u + g τ } .

    Then the integral equations (5.2) and (5.3) have a unique solution.

Proof

By assumption (ii),

$$\begin{aligned} \vert Su+Tg \vert &= \int _{0}^{k} \bigl\vert H(k,h,u)+G(k,h,g) \bigr\vert \,dh \\ &\leq \int _{0}^{k} \frac{2\tau e^{\tau h}E(u,g)}{ ( \tau \sqrt{E(u,g)}+1 ) ^{2}}\,dh \\ &\leq \frac{2\tau E(u,g)}{ ( \tau \sqrt{E(u,g)}+1 ) ^{2}}\int _{0}^{k}e^{\tau h}\,dh \\ &\leq \frac{2E(u,g)}{ ( \tau \sqrt{E(u,g)}+1 ) ^{2}}e^{ \tau k}. \end{aligned}$$

This implies

$$\begin{aligned} &\vert Su+Tg \vert e^{-\tau k}\leq \frac{2E(u,g)}{ ( \tau \sqrt{E(u,g)}+1 ) ^{2}}, \\ &\Vert Su+Tg \Vert _{\tau }\leq \frac{2E(u,g)}{ ( \tau \sqrt{E(u,g)}+1 ) ^{2}}, \\ &\sqrt{ \Vert Su+Tg \Vert _{\tau }}\leq \frac{\sqrt{2E(u,g)}}{\tau \sqrt{E(u,g)}+1}, \\ &\frac{\tau \sqrt{E(u,g)}+1}{\sqrt{E(u,g)}}\leq \sqrt{ \frac{2}{ \Vert Su+Tg \Vert _{\tau }}}, \\ &\tau +\sqrt{\frac{1}{E(u,g)}}\leq \sqrt{ \frac{2}{ \Vert Su+Tg \Vert _{\tau }}}, \end{aligned}$$

which further implies

$$\begin{aligned} &\tau -\sqrt{\frac{2}{ \Vert Su(k)+Tg(k) \Vert _{\tau }}}\leq -\sqrt{ \frac{1}{E(u,g)}}, \\ &\tau +V \biggl(\frac{1}{2} \bigl\Vert Su(k)+Tg(k) \bigr\Vert _{\tau } \biggr)\leq V \bigl(E(u,g) \bigr). \end{aligned}$$

So, all the requirements of Theorem 5.1 are satisfied for \(V(f)=\frac{-1}{\sqrt{f}}\), \(f>0\), and \(u_{l}(f,g)=\frac{1}{l+1}\Vert f+g\Vert _{\tau }\). Hence, the integral equations (5.2) and (5.3) have a common solution. □

6 Conclusion

In this article, we have achieved some new results for a pair of fuzzy \(\alpha _{\ast }\)-dominated mappings, which are generalizations of Wardowski’s contraction. Further results in ordered spaces and graph theory are presented. Results for multivalued and single-valued mappings are also discussed. Moreover, we investigate our results in new generalized modular-like metric spaces. An application is presented to ensure the existence of a solution of nonlinear Volterra-type integral equations. Many consequences of our results in dislocated metric spaces, dislocated fuzzy metric spaces, fuzzy metric spaces, ordered spaces, metric spaces, and partial metric spaces can be easily established.

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Acar, O., Durmaz, G., Minak, G.: Generalized multivalued F-contractions on complete metric spaces. Bull. Iranian Math. Soc. 40, 1469–1478 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Ahmad, J., Al-Rawashdeh, A., Azam, A.: Some new fixed point theorems for generalized contractions in complete metric spaces. Fixed Point Theory Appl. 2015, Article ID 80 (2015)

    Article  MATH  Google Scholar 

  3. Ali, M.U., Kamran, T., Karapınar, E.: Further discussion on modified multivalued \(\alpha ^{\ast }\)ψ-contractive type mapping. Filomat 29(8), 1893–1900 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arshad, M., Khan, S.U., Ahmad, J.: Fixed point results for F-contractions involving some new rational expressions. JP J. Fixed Point Theory Appl. 11(1), 79–97 (2016)

    Article  MATH  Google Scholar 

  5. Arshad, M., Shoaib, A., Vetro, P.: Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered dislocated metric spaces. J. Funct. Spaces 2013, Article ID 63818 (2013)

    MATH  Google Scholar 

  6. Asl, J.H., Rezapour, S., Shahzad, N.: On fixed points of αψ contractive multifunctions. Fixed Point Theory Appl. 2012, Article ID 212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aubin, J.P.: Mathematical Methods of Games and Economic Theory. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  8. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fundam. Math. 3, 133–181 (1922)

    Article  MATH  Google Scholar 

  9. Bohnenblust, S., Karlin, S.: Contributions to the Theory of Games. Princeton University Press, Princeton (1950)

    MATH  Google Scholar 

  10. Butnariu, D.: Fixed point for fuzzy mapping. Fuzzy Sets Syst. 7, 191–207 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaipunya, P., Cho, Y.J., Kumam, P.: Geraghty-type theorems in modular metric spaces with an application to partial differential equation. Adv. Differ. Equ. 2012, 83 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chistyakov, V.V.: Modular metric spaces, I: basic concepts. Nonlinear Anal. 72, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cirić, L., Agarwal, R., Samet, B.: Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces. Fixed Point Theory Appl. 2011, Article ID 56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cirić, L., Cakić, N., Rajović, M., Ume, J.S.: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2008, Article ID 131294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cirić, L., Samet, B., Cakić, N., Damjanović, B.: Coincidence and fixed point theorems for generalized (ψ, φ)-weak nonlinear contraction in ordered K-metric spaces. Comput. Math. Appl. 62(9), 3305–3316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heilpern, S.: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83(2), 566–569 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hussain, N., Ahmad, J., Azam, A.: Generalized fixed point theorems for multi-valued α-ψ-contractive mappings. J. Inequal. Appl. 2014, Article ID 348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hussain, N., Ahmad, J., Azam, A.: On Suzuki–Wardowski type fixed point theorems. J. Nonlinear Sci. Appl. 8, 1095–1111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hussain, N., Al-Mezel, S., Salimi, P.: Fixed points for ψ-graphic contractions with application to integral equations. Abstr. Appl. Anal. 2013, Article ID 575869 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hussain, N., Salimi, P.: Suzuki–Wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 18(6), 1879–1895 (2014). https://doi.org/10.11650/tjm.18.2014.4462

    Article  MathSciNet  MATH  Google Scholar 

  21. Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 4(136), 1359–1373 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Jain, D., Padcharoen, A., Kumam, P., Gopal, D.: A new approach to study fixed point of multivalued mappings in modular metric spaces and applications. Mathematics 4, 51 (2016)

    Article  MATH  Google Scholar 

  23. Khan, S.U., Arshad, M., Hussain, A., Nazam, M.: Two new types of fixed point theorems for F-contraction. J. Adv. Stud. Topol. 7(4), 251–260 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuaket, K., Kumam, P.: Fixed point for asymptotic pointwise contractions in modular space. Appl. Math. Lett. 24, 1795–1798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kumam, P.: Fixed point theorems for nonexpansive mapping in modular spaces. Arch. Math. 40, 345–353 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Mahmood, Q., Shoaib, A., Rasham, T., Arshad, M.: Fixed point results for the family of multivalued F-contractive mappings on closed ball in complete dislocated b-metric spaces. Mathematics 7(1), Article ID 56 (2019)

    Article  MathSciNet  Google Scholar 

  27. Nadler, S.B.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

    Article  MATH  Google Scholar 

  28. Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22(3), 223–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Padcharoen, A., Gopal, D., Chaipunya, P., Kumam, P.: Fixed point and periodic point results for α-type F-contractions in modular metric spaces. Fixed Point Theory Appl. 2016, 39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Piri, H., Kumam, P.: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Piri, H., Rahrovi, S., Morasi, H., Kumam, P.: Fixed point theorem for F-Khan-contractions on complete metric spaces and application to the integral equations. J. Nonlinear Sci. Appl. 10, 4564–4573 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qiu, D.: The strongest t-norm for fuzzy metric spaces. Kybernetika 49, 141–148 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Qiu, D., Dong, R., Li, H.: On metric spaces induced by fuzzy metric spaces. Iran. J. Fuzzy Syst. 13, 145–160 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Qiu, D., Lu, C., Deng, S., Wang, L.: On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric. Kybernetika 50, 758–773 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Qiu, D., Lu, C., Zhang, W.: On fixed point theorems for contractive-type mappings in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11, 123–130 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Qiu, D., Shu, L.: Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings. Inf. Sci. 178, 3595–3604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132(5), 1435–1443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rasham, T., Mahmood, Q., Shahzad, A., Shoaib, A., Azam, A.: Some fixed point results for two families of fuzzy A-dominated contractive mappings on closed ball. J. Intell. Fuzzy Syst. 36(4), 3413–3422 (2019)

    Article  Google Scholar 

  39. Rasham, T., Shoaib, A.: Common fixed point results for two families of multivalued A-dominated contractive mappings on closed ball with applications. Open Math. 17(1), 1350–1360 (2019)

    Article  MathSciNet  Google Scholar 

  40. Rasham, T., Shoaib, A., Alamri, B.A.S., Arshad, M.: Multivalued fixed point results for new generalized F-dominated contractive mappings on dislocated metric space with application. J. Funct. Spaces 2018, Article ID 4808764 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Rasham, T., Shoaib, A., Alamri, B.A.S., Asif, A., Arshad, M.: Fixed point results for \(\alpha _{\ast }\)ψ-dominated multivalued contractive mappings endowed with graphic structure. Mathematics 7(3), Article ID 307 (2019)

    Article  Google Scholar 

  42. Rasham, T., Shoaib, A., Hussain, N., Arshad, M.: Fixed point results for a pair of \(\alpha ^{\ast }\)-dominated multivalued mappings with applications. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 81(3), 3–12 (2019)

    MathSciNet  Google Scholar 

  43. Rasham, T., Shoaib, A., Hussain, N., Arshad, M., Khan, S.U.: Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. J. Fixed Point Theory Appl. 20(1), 45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rasham, T., Shoaib, A., Park, C., De La Sen, M., Aydi, H., Lee, J.R.: Multivalued fixed point results for two families of mappings in modular-like metric spaces with applications. Complexity 2020, Article ID 2690452 (2020)

    Article  MATH  Google Scholar 

  45. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for αψ-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sgroi, M., Vetro, C.: Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 27(7), 1259–1268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shahzad, A., Shoaib, A., Khammahawong, K., Kumam, P.: New Ciric type rational fuzzy F-contraction for common fixed points. In: Beyond Traditional Probabilistic Methods in Economics, vol. 809, pp. 215–229. Springer, Switzerland (2019)

    Chapter  Google Scholar 

  48. Shahzad, A., Shoaib, A., Mahmood, Q.: Fixed point theorems for fuzzy mappings in b-metric space. Ital. J. Pure Appl. Math. 38(1), 419–427 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Shazad, A., Rasham, T., Marino, G., Shoaib, A.: On fixed point results for \(\alpha _{\ast }\)-ψ-dominated fuzzy contractive mappings with graph. J. Intell. Fuzzy Syst. 38(8), 3093–3103 (2020)

    Article  Google Scholar 

  50. Shoaib, A., Rasham, T., Hussain, N., Arshad, M.: \(\alpha _{\ast }\)-dominated set-valued mappings and some generalised fixed point results. J. Nat. Sci. Found. Sri Lanka 47(2), 235–243 (2019)

    Article  Google Scholar 

  51. Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Weiss, W.D.: Fixed points and induced fuzzy topologies for fuzzy sets. J. Math. Anal. Appl. 50, 142–150 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that there is no funding available for this paper.

Author information

Authors and Affiliations

Authors

Contributions

Each author equally contributed to this paper, read, and approved the final manuscript.

Corresponding authors

Correspondence to Choonkill Park or Hassen Aydi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasham, T., Shoaib, A., Park, C. et al. On a pair of fuzzy mappings in modular-like metric spaces with applications. Adv Differ Equ 2021, 245 (2021). https://doi.org/10.1186/s13662-021-03398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03398-6

MSC

Keywords