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Abstract
Progressive retinal degeneration manifesting as age-related macular degeneration (AMD) in

the elderly affects millions of individuals worldwide. Among various blinding diseases, AMD

is the leading cause of central vision impairment in developed countries. Poor understand-

ing of AMD etiology hampers the development of therapeutics against this devastating

ocular disease. Currently, daily intravitreal injections of anti-angiogenic drugs, preventing

abnormal vessel growth are the only treatment option for wet AMD. However, for dry AMD

associated with retinal atrophy, at present there is no cure available. Recent clinical

research has demonstrated beneficial effects of plant-derived compounds for various eye

disorders. Thus, the ongoing efforts toward discovering efficient treatments preventing or

delaying AMD progression focus on implementing a healthy diet rich in vitamins, including

vitamin A, E, and C, minerals and carotenoids, in particular lutein and zeaxanthin, to reduce

the disease burden. In addition, studies in cell culture and animal models indicated thera-

peutic potential of dietary polyphenolic compounds present in fruits and vegetables. These

natural compounds protect visual function and retinal morphology likely due to their anti-

oxidant and anti-inflammatory properties. Although understanding of the exact mechanism

of these compounds’ positive effects requires further investigation, they provide non-

invasive alternative to battle AMD-like condition. Additionally, studies carried in animal models mimicking AMD-like pathology,

examining the pharmacological potential of particular retinoid analogs, demonstrated promising results for their use, and thus they

should be considered as an option in developing therapies for AMD. In here, we summarize the most current knowledge regarding

developments of therapeutic options to maintain ocular health and prevent vision loss associated with aging.
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Introduction

Human visual perception is critical to assimilate informa-
tion from our surrounding. However, genetic background,
environmental insults, and changes associated with aging
can cause visual deterioration and blindness.1–4 Molecular
events of vision are integrated into two pathways, photo-
transduction, which propagates the signal of light and
visual (retinoid) cycle responsible for the retinal chromo-
phore regeneration required to sustain vision.5

Phototransduction occurs in photoreceptors, while retinoid

cycle starts in photoreceptors and continues in the retinal

pigment epithelium (RPE). The visual receptors, rhodopsin

present in rod photoreceptors and cone opsins in cone pho-

toreceptors utilize the same 11-cis-retinal chromophore,

which upon light absorption isomerizes to all-trans-retinal,
triggering the conformational changes within the protein,

resulting in the formation of its active state, Meta II.6

Activated receptor recruits cellular G protein, which
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transduces the signal into an electrical impulse in the brain.
Eventually, all-trans-retinal is released from the receptor
and is converted back to 11-cis-retinal in the enzymatic

pathway of retinoid cycle.7 High concentration of rhodop-
sin in the retina can yield up to 5mM all-trans-retinal under
bright light condition. However, even much smaller con-
centration of this retinoid can be highly toxic if not efficient-
ly cleared.8 The efficiency of the visual system diminishes

significantly with age, leading to formation of poisonous
photo-products such as retinal dimer, di-retinoid-

pyridinium-ethanolamine (A2E) and other condensation
products that affect the health of photoreceptors and
RPE.9–12 Such accumulated photo-metabolites found in

AMD patients are likely contributing to development of
retinal degeneration.9,13 Thus, retinoids although critical

for maintaining vision, can also trigger specific retinal
pathologies when not tightly controlled.13,14 Discovering
the molecular targets and elucidating mechanisms

involved in this retinal degenerative disorder is mandatory
in order to develop efficient therapeutics to combat AMD.15

Studies in animal models featuring anomalies associated
with AMD and in cellular models of retinal cells are impor-
tant first steps before moving to clinical studies.

Prevalence

The first report describing yellowish deposits in the
macula, a hallmark of AMD, appeared in the medical liter-
ature in 1852.16 However, clearer concept of macular degen-
eration related to aging emerged around 1970. Currently,
about 285 million people worldwide suffer from various
severe visual impairments of which 39 million are
blind.17,18 Among various ocular disorders, AMD is the
leading cause of irreversible blindness.19 According to
studies performed in 2014, in 2020 AMD will affect �200
million individuals globally, and by 2040 this number will
rise to �300.17,18 In the United States alone, approximately
11 million people suffer from the progressive deterioration
of the macula and this number is predicted to double by
2050.20 Thereby, AMD is a serious global problem causing
visual disability in humans over 50 years old in the indus-
trialized world that urgently requires to be addressed.

Classification

AMD is a progressive condition that is broadly classified
into early AMD, intermediate AMD, and advanced
AMD.21,22 Early AMD features the presence of soft indis-
tinct drusen, pigmentary abnormalities, or increased retinal
pigment deposits. Intermediate stage presents with larger
drusen and/or non-central geographic atrophy, which may
progress overtime to the advanced stage of the disease.
While early and intermediate AMD cause only mild
impairments of the visual perception, advanced AMD
causes blindness. In case of advanced AMD, there are
two clinical presentations: (i) dry AMD characterized by
the progressive atrophy of the RPE cells related to lipofus-
cin accumulation in those cells and drusen deposits at the
basal laminar membrane with subsequent loss of

photoreceptors, resulting in loss of sight, and (ii) wet
AMD accompanied by choroidal neovascularization.
These abnormal, leaking vessels and lipid deposits disrupt
the retinal structure, resulting in focal retinal detachment
and rapid, profound loss of central vision, which without
treatment could progress to total blindness.23,24

Risk factors

Degeneration of the macular region of the retina is the hall-
mark of AMD, but the reason for preferential deterioration
of this central part of the retina remains unclear. Among
recognized risk factors for AMD, advanced age is the most
significant. However, various conditions such as genetic
predisposition, race, and environment may attribute to a
functional decline of vision in AMD.25–27 Smoking, exces-
sive body weight, cardiovascular disease, or high blood
pressure increase a risk for the development of AMD.25–29

Long-term exposure to sun without eye protection enhan-
ces the probability for developing the disease or accelerat-
ing its progression.28,30–32 Specific genetic background, for
example, polymorphism in genes encoding complement
factor H, complement components 2, and 3 increases the
likelihood for AMD in elderly.33–37 In addition, these genet-
ic alterations are potentially epigenetically regulated, but
the mechanism of this regulation is at present not well
understood.38 People with Caucasian ethnicity are more
likely to develop AMD.39 Moreover, females are more
inclined to AMD than males, likely because they live
longer.27,40 Diets with elevated fat, cholesterol, and high
glycemic index foods, as well as low dietary intake of
anti-oxidants that are present in green leafy vegetables
and fruits are strongly associated with prevalence of
AMD.41 Additionally, cigarette smoking has strong impli-
cation in the development of AMD.42 However, further
studies are necessary to confirm the contribution of all
these factors in the AMD pathogenesis.

Pathogenesis

AMD results in the clinical pathophysiology characterized
by dysfunction and atrophy of the RPE cells, which further
triggers death of photoreceptors. The pathogenesis and
progression of the disease have been associated with an
enhanced oxidative stress and inflammation.43 Early clini-
cal manifestation of the ocular pathology in AMD patients
is the formation of drusen deposits between the RPE cells
and Bruch’s membrane, and accumulation of lipid-
containing autofluorescent lipofuscin granules in the
RPE.44–49 These deposits disrupt the connection between
the RPE and the choroidal blood supply, inducing hypoxia.
Under hypoxic conditions, the expression of VEGF and
other pro-angiogenic factors is induced to promote the for-
mation of new vessels.50,51 Additionally, immune cells,
such as macrophages localize at the break-down of
Bruch’s membrane, where they induce infiltration of
other immune cells from the blood circulation. Soluble fac-
tors, including cytokines released by these cells accelerate
angiogenesis, and thus progression of the disease.43

However, more research is required to fully understand
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the exact molecular mechanism underlying the pathogene-
sis of AMD.

Retinoid imbalance as a cause of AMD

Retinoids are precursors and derivatives of vitamin Awith
many biological functions throughout the body, thus main-
taining balanced retinoid homeostasis is critical. In partic-
ular, an efficient supply and metabolism of retinoids in the
retina are essential for normal vision. b-carotene present in
dietary plants and retinyl esters derived from animal sour-
ces are precursors of the visual chromophore 11-cis-retinal
to form light sensing receptors, rhodopsin, and cone opsins.
Absorption of the light photon triggers isomerization of 11-
cis-retinal to its all-trans configuration, which eventually
dissociates from the visual receptors, resulting in the for-
mation of unliganded opsin and free all-trans-retinal.
Continuous conversion of all-trans-retinal back to 11-cis-ret-
inal is critical to sustain vision and is achieved through the
visual cycle (Figure 1), which starts in photoreceptors and
continues in the RPE cells. A delay in this process leads to
increased local concentrations of all-trans-retinal, and thus
excessive accumulation of its byproducts, including all-
trans-retinal dimer and A2E in both photoreceptors and
in the RPE cells, which continuously phagocytize and
degrade membranes originated from rod and cone photo-
receptors. Stable, resistant to an enzymatic digest A2E com-
prises the principle component of lipofuscin granules that
are toxic to the RPE11,12,45,47,48,52 and together with drusen
deposits at the basal laminar membrane result in the nutri-
tional barrier that contribute to photoreceptors’ death.53,54

The efficiency of the visual cycle in clearing the toxic photo-
metabolites and the rate of regeneration of the visual pig-
ments slow down significantly with age, causing a decline
in health of photoreceptors and the RPE that lead to devel-
opment of retinal degeneration.

Retinoids and prevention of AMD

Decreasing the levels of photo-metabolites could have clin-
ical implications decelerating the degenerative processes in
the retina during aging. Indeed, introducing the deuterium
atom at C20 of vitamin A slowed the rate of all-trans-retinal
dimerization in vitro and in rodents due to the kinetic iso-
tope effect.55,56 Consequently, WT mice administered with
deuterated vitamin A exhibited 68% less A2E than control
mice administered with normal vitamin A. Thus, supple-
mentation with C20-D3-vitamin A that limits the A2E bio-
synthesis potentially could be a viable approach to slow
down the age-related deposition of lipofuscin pigments in
the human retina (Table 1). Generation of A2E could also be
prevented by slowing the rate of all-trans-retinal formation
by treatment with the visual cycle inhibitors. Isotretinoin
(13-cis-retinoic acid) decreased levels of 11-cis-retinal by
50% in the eyes of Abca4�/� mice, a model for Stargardt
disease, a juvenile AMD, but also in the eyes of WT mice
injected daily with 20mg/kg isotretinoin from two to four-
month-old, evidently slowing down the visual cycle.57

Formation of A2E in these mice was also reduced. Thus,
isotretinoin potentially could be used as preventive treat-
ment for AMD. However, the dosage regimen would need
to be carefully established as patients treated with isotret-
inoin were experiencing side effects associated with night
blindness.58 Reversible suppression of the visual cycle was
observed also with other visual cycle inhibitors such as n-
(4-hydroxyphenyl) retinamide, retinylamine, and emixu-
stat (Table 1) in mouse models of retinal degeneration.59–63

However, despite their potential beneficial effects delaying
degenerative processes in the retina related to excessive
light exposure or aging, the use of these visual cycle inhib-
itors as a therapy for AMD is questionable because pro-
longed treatment with these chemicals can cause night
blindness. Indeed, randomized clinical trial performed to
evaluate safety and tolerability of emixustat in AMD
patients carried for over two years showed that emixustat

Figure 1. Retinoid cycle and synthesis of A2E. Light triggers isomerization of 11-cis-retinal (11-cis-RAL) chromophore to all-trans-retinal (All-trans-RAL). Under normal

conditions, all-trans-retinal is reduced to all-trans-retinol (All-trans-ROL) by retinol dehydrogenases 8 and 12 (RDH8 and RDH12, respectively), which then is esterified

by lecithin retinol acyltransferase (LRAT) to all-trans-retinyl esters (All-trans-retinyl-RE). These esters can be stored in retinosomes or converted to 11-cis-retinol (11-

cis-ROL) by retinal pigment epithelium-specific protein 65 (RPE65) isomerase. 11-cis-Retinol is converted to 11-cis-retinal by retinol dehydrogenase 5 (RDH5), which

then can re-associate with opsin forming the visual pigment, rhodopsin. Inefficient reduction of all-trans-retinal to all-trans-retinol results in excess of all-trans-retinal,

which can react with phosphatidylethanolamine (PE), resulting in formation of bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E). Accumulated A2E causes an

increase of reactive oxygen species (ROS) detrimental to the retinal cells. Overproduction of ROS can be decreased by specific retinoid analogs, dietary carotenoids

and polyphenolics, particularly flavonoids. (A color version of this figure is available in the online journal.)
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not only did not reduce geographic atrophy lesions, but
also some patients experienced ocular problems, including
delayed dark adaptation, chromatopsia, and erythropsia.64

Keeping all-trans-retinal in the retina at low level would
prevent the aberrant formation of toxic all-trans-retinal
byproducts, and thus is critical to prolong the retinal
health. Indeed, toxicity of all-trans-retinal was effectively
reduced by the FDA-approved primary amine drugs that
chemically trapped all-trans-retinal, precluding its binding
to membranous phosphatidylethanolamine, and thus
reducing the formation of A2E in WTand genetically mod-
ified Abca4�/�Rdh8�/� mice, modeling AMD.66

Slowed recovery after photobleaching typifies patients
with AMD, and it is likely associated with slower pigment
regeneration in photoreceptors. Inefficient regeneration of
the visual receptor leads to excessive concentrations of unli-
ganded, constitutively active opsin that accelerates degen-
erative processes in the retina.67,68 To assure the efficient
regeneration of the visual pigment, the visual cycle could
be bypassed by the supplementation with an artificial chro-
mophore 9-cis-retinyl acetate as a prodrug. Ingested 9-cis-
retinyl acetate is converted to 9-cis-retinyl esters in the liver,

followed by their conversion in the RPE to 9-cis-retinal,
which then can associate with unliganded opsin forming
functional, light sensitive receptor. Unfortunately, this
treatment applied to Abca4�/�Rdh8�/� mice, modeling
AMD, did not prevent formation of all-trans-retinal upon
light illumination and accumulation of A2E, thus it failed to
fully protect these mice from the development of retinal
degeneration.69 On the other hand, treatment with 11-cis-
6-membered-ring-retinal fully protected these mice against
light-induced retinal damage65 (Table 1). This retinoid con-
tains a ring between C10 and C13 instead of the double
bond between C11¼C12, which prevents the light-
stimulated conversion from 11-cis to all-trans configuration,
locking the chromophore within the receptor’s ligand-
binding pocket. Thus, upon binding to opsin 11-cis-6-mem-
bered-ring-retinal not only quenches its deleterious
constitutive activity, but also prevents an increase of free
all-trans-retinal concentration in the retina upon illumina-
tion. In such scenario, formation of A2E would also be pre-
vented. Therefore, 11-cis-6-membered-ring-retinal offers
potential therapeutic opportunity for AMD-like degenera-
tive disorders.

Table 1. Potential retinoid therapeutics for AMD-like retinal degeneration.

Compound name Chemical structure Protection mechanism References

C20-D3-vitamin A � Slowing the rate of all-trans-retinal

dimerization

� Deceleration of A2E biosynthesis

55–56

Isotretinoin � Decrease of 11-cis-retinal levels 57–58

N-(4-Hydroxyphenyl)

retinamide

� Reversible suppression of the visual cycle 59

Emixustat � Reversible suppression of the visual cycle 60–62

Retinylamine � Reversible suppression of the visual cycle 61

11-cis-6-member-retinal � Prevention of the retinal isomerization

� Locking the chromophore within the

receptor’s ligand-binding pocket

65
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Natural products as a source of treatment for
AMD

Normal physiological processes are compromised during
aging. Significant diminution in the control of oxidative
stress and tissue regeneration leads to malfunction of
many organ systems, including the eye.70 AMD pathogen-
esis is a complex process and to date, no therapeutic choice
can prevent this disease.71 The eye tissue is particularly
susceptible to oxidative stress due to continuous photo-
chemical reactions occurring in the retina upon exposure
to light.72 High metabolic rate and high oxygen demand in
the retina trigger the production of reactive oxygen species
(ROS).73 In addition, the outer retina membranes contain
high levels of polyunsaturated lipids specifically suscepti-
ble to peroxidation. Moreover, the rate of generation of all-
trans-retinal during activation of rhodopsin often exceeds
the rate of its reduction to all-trans-retinol. The reactive all-
trans-retinal conjugates with the membranous phosphati-
dylethanolamine resulting in formation of A2E, which
accumulates in the RPE and contributes to the formation
of lipofuscin deposits that enhance oxidative stress in these
cells.12 Oxidative stress and associated inflammatory
responses lead to activation of apoptotic processes in the
retinal cells that culminate in the retinal cell death.74 An
imbalance between the levels of pro-oxidative radicals
and anti-oxidants contributes to retinal degeneration in
AMD. Genetic and environmental factors can further pre-
dispose to developing AMD.75 Thus, changes in the expo-
sure to such environmental factors and implementing
modifications in daily diet could decrease risk for develop-
ing AMD or slow its progression. Treatment with anti-
oxidants is one advocated therapy against AMD, to counter
the overproduction of ROS in degenerating retinas. Natural
products present in plants, fruits, and vegetables are excel-
lent sources of compounds with anti-oxidant properties.
The main nutritional anti-oxidants belong to two com-
pound families: carotenoids and polyphenols.76 As
reported by the clinical-epidemiological Age-Related Eye
Disease Study (AREDS), daily ingestion of anti-oxidant
minerals, vitamin, and carotenoids can significantly (up
to 28%) lessen the progression of vision loss in patients
with moderate macular degeneration.77 Specifically,
intake of dietary carotenoids, including zeaxanthin and
lutein delayed the progression of the disease in
humans.78–80 Thus, enrichment of carotenoids in the diet
could have a positive impact on the retinal health.76

Beneficial effects, suppressing oxidative stress and activa-
tion of immune response pathways responsible for AMD
progression were also found upon ingestion of vitamin A,
E, and C.79 Additionally, ocular benefits correlated with
diet supplemented with leafy green vegetables and fruits
containing polyphenols. Dietary polyphenols possess het-
erogeneous chemical motives and belong to three main
groups: phenolic acids, flavonoids, and polyphenolic
amides.81 Their biological activity is associated with anti-
oxidant, anti-inflammatory, and anti-apoptotic proper-
ties.82–86 In this review, we focus on characterizing specific
flavonoids and their therapeutic potential in preventing or
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delaying the degenerative retinal processes related
to AMD.

Flavonoids as AMD preventing agents

Flavonoids are a group of natural chemical compounds
found mainly in fruits, vegetables, tea, and herbs. They
are widely used in the development of nutraceutical, phar-
maceutical, and cosmetic products. Chemical structure of
flavonoids in general is composed of two phenyl rings and
one heterocyclic ring, which are further modified. Based on
the structural differences, flavonoids are subdivided into
several subgroups such as flavonols, flavones, isoflavones,
flavanols, and anthocyanidines.87 Flavonoids are the most
common group of dietary polyphenol compounds with
multiple biological activates such as anti-inflammatory,
anti-viral, anti-apoptotic, and anti-oxidant, valuable in
numerous pathologies.82–84,86,88–90 Flavonoids exhibit
health benefits in multiple eye pathologies, including cata-
ract, glaucoma, diabetic retinopathy, retinitis pigmentosa,
and AMD.91–95 The positive effects of flavonoids in pre-
venting or slowing down AMD are likely related to their
role in decreasing health risk factors, such as obesity, hyper-
cholesterolemia, and hypertension.96 Lifestyle associated
with unhealthy diet and smoking, as well as other environ-
mental factors, including exposure to bright light, potenti-
ates ROS production. However, flavonoids either by
directly sequestering these oxidative radicals or by activat-
ing specific pathways limit cellular concentrations of ROS.
Oxidative stress activates host immune and other defense
mechanisms eventually leading to retinal cell death.
Flavonoids can inhibit the inflammatory reactions and
induce the expression of anti-apoptotic genes, halting, or
decelerating the retinal degeneration. Additionally, benefi-
cial effects of flavonoids are related to their direct modula-
tory interaction with the visual receptor, rhodopsin in
photoreceptor cells.95,97,98 Collectively, all these positive
effects of flavonoids can inhibit the development or pro-
gression of AMD (Table 2).

The mechanisms of action of numerous flavonoids have
been evaluated in the AMD-related in vitro and in vivo
models relevant to vision and this ocular pathology. As
the RPE tissue is implicated in the oxidative stress and
inflammation associated with AMD, the RPE-derived
ARPE-19 cells have been commonly used to evaluate effects
of tested flavonoids. To mimic the AMD conditions, these
cells could be loaded with A2E, the major pathogenic factor
triggering oxidative stress and atrophy of the RPE.
Alternatively, these cells have been subjected to oxidative
stress generating agent such as H2O2, or toxins activating
inflammation such as lipopolysaccharides (LPS).
Approaches such as measuring the cell viability or exam-
ining levels of cellular markers of oxidative stress, inflam-
mation and apoptosis have been used to assess protective
effects of flavonoids against the applied stressor.

Quercetin, flavonoid commonly present in berries,
apples, green tea and wine, increased viability of the
ARPE-19 cells under H2O2-mediated oxidative stress by
direct sequestration of free radicals and through activation
of cellular pro-survival mechanisms.99–101 As reported, it

also decreased levels of pro-inflammatory markers such
as interleukins (IL-6 and IL-8).100 Treatment with quercetin
resulted in the negative modulation of the transcription
profile of genes encoding proteins implicated in apoptosis
such as BAX, FADD (Fas-associated via death domain), and
caspases, and enhanced the expression of pro-survival pro-
tein BCL-2. Pretreatment of the ARPE-19 cells with querce-
tin prior to their exposure to A2E reduced levels of ROS and
increased viability of these cells.102 Additionally, quercetin
showed an inhibitory effect in the production of adducts of
methylglyoxal and in the reaction of glutathione with
photo-oxidized A2E.102

Myricetin and its glycosylated formmyricitrin, naturally
present in leaves of S. malaccense, similarly to quercetin,
could decrease levels of ROS in the ARPE-19 cells exposed
to H2O2 by their direct sequestration.103 In addition, myr-
icetrin downregulated the nitric oxide synthase (NOS2) and
increased the expression of anti-oxidant enzyme, superox-
ide dismutase (SOD2). Myricetin also enhanced the expres-
sion of Nrf2, a transcription factor, which regulates the
expression of anti-oxidant proteins.103 Moreover, by con-
trolling various pro-apoptotic factors and inflammatory
markers at the molecular level, myricetin showed the abil-
ity to prevent apoptosis of the retinal cells.

Kaempferol found in variety of plants such as kale, spin-
ach, and broccoli, protected retinal cells by directly neutral-
izing oxidative stress and by regulating the cellular
responses to this stress.104 Its mechanism of protection is
also associated with anti-apoptotic effects and downregu-
lation of vascular endothelial growth factor (VEGF) expres-
sion.105 These kaempferol’s effects have been validated in a
sodium iodate-induced retinal degeneration rat model.
Sodium iodate is a toxin that selectively induces damage
of the RPE cells by inducing oxidative stress and conse-
quently causes retinal degeneration. In this rat model, pre-
treatment with kaempferol decreased retinal degeneration
by counteracting oxidative stress and decreasing expres-
sion of VEGF.105

Hesperidin, a common flavanone glycoside found in the
citrus fruits, is widely used in Chinese medicine as anti-
inflammatory and anti-oxidant compound.106–109 The main
molecular mechanism of protection provided by hesperidin
is related to the decrease of the cellular ROS concentration
via enhancing levels of SOD2 and glutathione S-transferase
(GSH), two main regulators of ROS production in the reti-
nal cells.108

Fisetin and luteolin found in different plants protected
the ARPE-19 cells against 4-hydroxynonenal (HNE)-
induced cytotoxicity.104,110,111 HNE is an end-product of
lipid peroxidation prone to trigger apoptosis.
Pretreatment of the ARPE-19 cells with fisetin and luteolin
before the exposure to HNE resulted in reduction of the
levels of pro-inflammatory cytokines IL-6 and IL-8 in
these cells. Additionally, both fisetin and luteolin downre-
gulated the inflammatory reactions by decreasing the activ-
ity of the transcription factor CREB and the mitogen-
activated kinases (MAPKs) such as p38 MAPK, JNK, and
ERK1/2.110

Nobiletin, a polymethoxylated flavonoid present in
citrus fruits inhibited stress-induced activity of caspase-
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3/7 and significantly increased Akt phosphorylation in the
ARPE-19 cells exposed to H2O2.

112

Wogonin, a methoxylated flavonoid with anxiolytic
properties found in Scutellaria baicalensis, a common herb
used in traditional Chinese medicine,115 increased the via-
bility of the ARPE-19 cells challenged with H2O2 via mod-
ulation of the PI3K (phosphatidylinositol-3 kinase) and Akt
pathway.113,114

Together, all studies examining the effects of different
flavonoids demonstrated that they possess the ability to
mitigate the oxidative damage, reduce the activation of
inflammatory markers, and can inhibit apoptosis, the fun-
damental processes related to AMD induction and progres-
sion. Although the potential benefits of flavonoids in AMD,
constitute a relatively novel concept, and the bioactivity of
these compounds were mostly characterized in vitro, the
promising results provide a rationale to investigate the
role of flavonoids in various aspects of vision physiology
and pathology.

Effect of flavonoids on the visual pigment
regeneration

In addition to anti-oxidant, anti-inflammatory, and anti-
apoptotic properties, the positive effects of dietary poly-
phenols, specifically anthocyanins and flavonoids, on
human vision are also related to their direct modulatory
effects on the visual receptor, rhodopsin. Enhanced recov-
ery of visual sensitivity after exposure to bright light was
noted in patients supplemented with black currant antho-
cyanins, likely through the modulation of the rod compo-
nent involved in dark adaptation.116 Eating rich in
anthocyanins black berries before the night flights
enhanced night vision of British and French war pilots,
although this improvement was dependent on the individ-
ual. As reported, anthocyanins target directly the visual
receptor and upon binding to chromophore-free opsin
increase the rate of retinal binding and regeneration of
functional rhodopsin.117,118 Similar effect accelerating
regeneration of rhodopsin was also noted for flavonoids,
specifically quercetin and myricetin.97,98 In AMD, the
visual pathology is associated with declined recovery of
visual sensitivity after exposure to light, likely due to inad-
equate pigment regeneration and excess of unliganded
opsin. Thus, treatments with polyphenolic compounds
could be beneficial for the improvement of the rod cells
light sensitivity impaired in AMD patients.

Conclusions

AMD is a multifactorial disease with no remedy available.
Understanding the AMD pathogenesis is critical in order to
develop effective cures. Potential avenues toward develop-
ing the AMD-related therapy should include: (i) an inhibi-
tion of toxic photo-metabolites formation; (ii) an effective
clearance of photo-products; (iii) silencing of accumulated
unliganded, constitutively active opsin by retinoid traps;
(iv) pharmacological modulation of opsin by compounds
enhancing regeneration of the functional receptor; (v)
reducing oxidative stress and inhibition of inflammatory

processes activated in the retina; and (vi) discovering
novel targets related to AMD pathogenesis that could be
modulated pharmacologically. The accumulated knowl-
edge indicates the retinal health benefits of the specific ret-
inal analog, 11-cis-6-membered-ring-retinal, which upon
binding to opsin reduces concentration of ligand-free
opsin and silences its constitutive activity, which otherwise
accelerates retinal degeneration. Binding of 11-cis-6-mem-
bered-ring-retinal also prevents the formation of poisonous
free all-trans-retinal and its byproducts mediated by light,
thus halts the formation of A2E. Furthermore, the rates of
rhodopsin regeneration with the native chromophore 11-
cis-retinal could be enhanced by dietary polyphenols such
as flavonoids and anthocyanidins. The latter also decreases
ROS formation and activates multiple pathways with pro-
survival outcomes. Thus, treatment with these compounds
either alone or in combination should be seriously consid-
ered as non-invasive remedy option preventing or delaying
AMD pathogenesis and progression.
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