[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Face recognition: A literature survey

Published: 01 December 2003 Publication History

Abstract

As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

References

[1]
Adini, Y., Moses, Y., and Ullman, S. 1997. Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. Patt. Anal. Mach. Intell. 19, 721--732.]]
[2]
Akamatsu, S., Sasaki, T., Fukamachi, H., Masui, N., and Suenaga, Y. 1992. An accurate and robust face identification scheme. In Proceedings, International Conference on Pattern Recognition. 217--220.]]
[3]
Atick, J., Griffin, P., and Redlich, N. 1996. Statistical approach to shape from shading: Reconstruction of three-dimensional face surfaces from single two-dimensional images. Neural Computat. 8, 1321--1340.]]
[4]
Azarbayejani, A., Starner, T., Horowitz, B., and Pentland, A. 1993. Visually controlled graphics. IEEE Trans. Patt. Anal. Mach. Intell. 15, 602--604.]]
[5]
Bachmann, T. 1991. Identification of spatially quantized tachistoscopic images of faces: How many pixels does it take to carry identity? European J. Cog. Psych. 3, 87--103.]]
[6]
Bailly-Bailliere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariethoz, J., Matas, J., Messer, K., Popovici, V., Poree, F., Ruiz, B., and Thiran, J. P. 2003. The BANCA database and evaluation protocol. In Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication. 625--638.]]
[7]
Bartlett, J. C. and Searcy, J. 1993. Inversion and configuration of faces. Cog. Psych. 25, 281--316.]]
[8]
Bartlett, M. S., Lades, H. M., and Sejnowski, T. 1998. Independent component representation for face recognition. In Proceedings, SPIE Symposium on Electronic Imaging: Science and Technology. 528--539.]]
[9]
Basri, R. and Jacobs, D. W. 2001. Lambertian refelectances and linear subspaces. In Proceedings, International Conference on Computer Vision. Vol. II. 383--390.]]
[10]
Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Intell. 19, 711--720.]]
[11]
Belhumeur, P. N. and Kriegman, D. J. 1997. What is the set of images of an object under all possible lighting conditions? In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 52--58.]]
[12]
Bell, A. J. and Sejnowski, T. J. 1995. An information maximisation approach to blind separation and blind deconvolution. Neural Computation 7, 1129--1159.]]
[13]
Bell, A. J. and Sejnowski, T. J. 1997. The independent components of natural scenes are edge filters. Vis. Res. 37, 3327--3338.]]
[14]
Beveridge, J. R., She, K., Draper, B. A., and Givens, G. H. 2001. A nonparametric statisical comparison of principal component and linear discriminant subspaces for face recognition. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. (An updated version can be found online at http://www.cs.colostate.edu/evalfacerec/news.html.)]]
[15]
Beymer, D. 1995. Vectorizing face images by interleaving shape and texture computations. MIT AI Lab memo 1537. Massachusetts Institute of Technology, Cambridge, MA.]]
[16]
Beymer, D. J. 1993. Face recognition under varying pose. Tech. Rep. 1461. MIT AI Lab, Massachusetts Institute of Technology, Cambridge, MA.]]
[17]
Beymer, D. J. and Poggio, T. 1995. Face recognition from one example view. In Proceedings, International Conference on Computer Vision. 500--507.]]
[18]
Biederman, I. 1987. Recognition by components: A theory of human image understanding. Psych. Rev. 94, 115--147.]]
[19]
Biederman, I. and Kalocsai, P. 1998. Neural and psychophysical analysis of object and face recognition. In Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 3--25.]]
[20]
Bigun, J., Duc, B., Smeraldi, F., Fischer, S., and Makarov, A. 1998. Multi-modal person authentication. In Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 26--50.]]
[21]
Black, M., Fleet, D., and Yacoob, Y. 1998. A Framework for modelling appearance change in image sequences. In Proceedings, International Conference on Computer Vision, 660--667.]]
[22]
Black, M. and Yacoob, Y. 1995. Tracking and recognizing facial expressions in image sequences using local parametrized models of image motion. Tech. rep. CS-TR-3401. Center for Automation Research, Unversity of Maryland, College Park, MD.]]
[23]
Blackburn, D., Bone, M., and Phillips, P. J. 2001. Face recognition vendor test 2000. Tech. rep. http://www.frvt.org.]]
[24]
Blanz, V. and Vetter, T. 1999. A Morphable model for the synthesis of 3D faces. In Proceedings, SIGGRAPH'99, 187--194.]]
[25]
Blanz, V. and Vetter, T. 2003. Face recognition based on fitting a 3D morphable model. IEEE Trans. Patt. Anal. Mach. Intell. 25, 1063--1074.]]
[26]
Bledsoe, W. W. 1964. The model method in facial recognition. Tech. rep. PRI:15, Panoramic research Inc., Palo Alto, CA.]]
[27]
Brand, M. and Bhotika, R. 2001. Flexible flow for 3D nonrigid tracking and shape recovery. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.]]
[28]
Brennan, S. E. 1985. The caricature generator. Leonardo, 18, 170--178.]]
[29]
Bronstein, A., Bronstein, M., Gordon, E., and Kimmel, R. 2003. 3D face recognition using geometric invariants. In Proceedings, International Conference on Audio- and Video-Based Person Authentication.]]
[30]
Bruce, V. 1988. Recognizing faces, Lawrence Erlbaum Associates, London, U.K.]]
[31]
Bruce, V., Burton, M., and Dench, N. 1994. What's distinctive about a distinctive face? Quart. J. Exp. Psych. 47A, 119--141.]]
[32]
Bruce, V., Hancock, P. J. B., and Burton, A. M. 1998. Human face perception and identification. In Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 51--72.]]
[33]
Bruner, I. S. and Tagiuri, R. 1954. The perception of people. In Handbook of Social Psychology, Vol. 2, G. Lindzey, Ed., Addison-Wesley, Reading, MA, 634--654.]]
[34]
Buhmann, J., Lades, M., and Malsburg, C. v. d. 1990. Size and distortion invariant object recognition by hierarchical graph matching. In Proceedings, International Joint Conference on Neural Networks. 411--416.]]
[35]
Chellappa, R., Wilson, C. L., and Sirohey, S. 1995. Human and machine recognition of faces: A survey. Proc. IEEE, 83, 705--740.]]
[36]
Choudhury, T., Clarkson, B., Jebara, T., and Pentland, A. 1999. Multimodal person recognition using unconstrained audio and video. In Proceedings, International Conference on Audio- and Video-Based Person Authentication. 176--181.]]
[37]
Cootes, T., Taylor, C., Cooper, D., and Graham, J. 1995. Active shape models---their training and application. Comput. Vis. Image Understand. 61, 18--23.]]
[38]
Cootes, T., Walker, K., and Taylor, C. 2000. View-based active appearance models. In Proceedings, International Conference on Automatic Face and Gesture Recognition.]]
[39]
Cootes, T. F., Edwards, G. J., and Taylor, C. J. 2001. Active appearance models. IEEE Trans. Patt. Anal. Mach. Intell. 23, 681--685.]]
[40]
Cox, I. J., Ghosn, J., and Yianilos, P. N. 1996. Feature-based face recognition using mixture-distance. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 209--216.]]
[41]
Craw, I. and Cameron, P. 1996. Face recognition by computer. In Proceedings, British Machine Vision Conference. 489--507.]]
[42]
Darwin, C. 1972. The Expression of the Emotions in Man and Animals. John Murray, London, U.K.]]
[43]
DeCarlo, D. and Metaxas, D. 2000. Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38, 99--127.]]
[44]
Donato, G., Bartlett, M. S., Hager, J. C., Ekman, P., and Sejnowski, T. J. 1999. Classifying facial actions. IEEE Trans. Patt. Anal. Mach. Intell. 21, 974--989.]]
[45]
Edwards, G. J., Taylor, C. J., and Cootes, T. F. 1998. Learning to identify and track faces in image sequences. In Proceedings, International Conference on Automatic Face and Gesture Recognition.]]
[46]
Ekman, P. Ed., 1998. Charles Darwin's The Expression of the Emotions in Man and Animals, Third Edition, with Introduction, Afterwords and Commentaries by Paul Ekman. HarperCollins/Oxford University Press, New York, NY/London, U.K.]]
[47]
Ellis, H. D. 1986. Introduction to aspects of face processing: Ten questions in need of answers. In Aspects of Face Processing, H. Ellis, M. Jeeves, F. Newcombe, and A. Young, Eds. Nijhoff, Dordrecht, The Netherlands, 3--13.]]
[48]
Etemad, K. and Chellappa, R. 1997. Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 1724--1733.]]
[49]
Fisher, R. A. 1938. The statistical utilization of multiple measuremeents. Ann. Eugen. 8, 376--386.]]
[50]
Freeman, W. T. and Tenenbaum, J. B. 2000. Separating style and contents with bilinear models. Neural Computat. 12, 1247--1283.]]
[51]
Fukunaga, K. 1989. Statistical Pattern Recognition, Academic Press, New York, NY.]]
[52]
Galton, F. 1888. Personal identification and description. Nature, (June 21), 173--188.]]
[53]
Gauthier, I., Behrmann, M., and Tarr, M. J. 1999. Can face recognition really be dissociated from object recognition? J. Cogn. Neurosci. 11, 349--370.]]
[54]
Gauthier, I. and Logothetis, N. K. 2000. Is face recognition so unique after All? J. Cogn. Neuropsych. 17, 125--142.]]
[55]
Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. 1999. Illumination-based image synthesis: Creating novel images of human faces under differing pose and lighting. In Proceedings, Workshop on Multi-View Modeling and Analysis of Visual Scenes, 47--54.]]
[56]
Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. 2001. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell. 23, 643--660.]]
[57]
Georghiades, A. S., Kriegman, D. J., and Belhumeur, P. N. 1998. Illumination cones for recognition under variable lighting: Faces. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, 52--58.]]
[58]
Ginsburg, A. G. 1978. Visual information processing based on spatial filters constrained by biological data. AMRL Tech. rep. 78--129.]]
[59]
Gong, S., McKenna, S., and Psarrou, A. 2000. Dynamic Vision: From Images to Face Recognition. World Scientific, Singapore.]]
[60]
Gordon, G. 1991. Face recognition based on depth maps and surface curvature. In SPIE Proceedings, Vol. 1570: Geometric Methods in Computer Vision. SPIE Press, Bellingham, WA 234--247.]]
[61]
Gu, L., Li, S. Z., and Zhang, H. J. 2001. Learning probabilistic distribution model for multiview face dectection. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.]]
[62]
Hager, G. D., and Belhumeur, P. N. 1998. Efficient region tracking with parametri models of geometry and illumination. IEEE Trans. Patt. Anal. Mach. Intell. 20, 1--15.]]
[63]
Hallinan, P. W. 1991. Recognizing human eyes. In SPIE Proceedings, Vol. 1570: Geometric Methods In Computer Vision. 214--226.]]
[64]
Hallinan, P. W. 1994. A low-dimensional representation of human faces for arbitrary lighting conditions. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 995--999.]]
[65]
Hancock, P., Bruce, V., and Burton, M. 1998. A comparison of two computer-based face recognition systems with human perceptions of faces. Vis. Res. 38, 2277--2288.]]
[66]
Harmon, L. D. 1973. The recognition of faces. Sci. Am. 229, 71--82.]]
[67]
Heisele, B., Serre, T., Pontil, M., and Poggio, T. 2001. Component-based face detection. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.]]
[68]
Hill, H. and Bruce, V. 1996. Effects of lighting on matching facial surfaces. J. Exp. Psych.: Human Percept. Perform. 22, 986--1004.]]
[69]
Hill, H., Schyns, P. G., and Akamatsu, S. 1997. Information and viewpoint dependence in face recognition. Cognition 62, 201--222.]]
[70]
Hjelmas, E. and Low, B. K. 2001. Face detection: A Survey. Comput. Vis. Image Understand. 83, 236--274.]]
[71]
Horn, B. K. P. and Brooks, M. J. 1989. Shape from Shading. MIT Press, Cambridge, MA.]]
[72]
Huang, J., Heisele, B., and Blanz, V. 2003. Component-based face recognition with 3D morphable models. In Proceedings, International Conference on Audio- and Video-Based Person Authentication.]]
[73]
Isard, M. and Blake, A. 1996. Contour tracking by stochastic propagation of conditional density. In Proceedings, European Conference on Computer Vision.]]
[74]
Jacobs, D. W., Belhumeur, P. N., and Basri, R. 1998. Comparing images under variable illumination. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 610--617.]]
[75]
Jebara, T., Russel, K., and Pentland, A. 1998. Mixture of eigenfeatures for real-time structure from texture. Tech. rep. TR-440, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA.]]
[76]
Johnston, A., Hill, H., and Carman, N. 1992. Recognizing faces: Effects of lighting direction, inversion and brightness reversal. Cognition 40, 1--19.]]
[77]
Kalocsai, P. K., Zhao, W., and Elagin, E. 1998. Face similarity space as perceived by humans and artificial systems. In Proceedings, International Conference on Automatic Face and Gesture Recognition. 177--180.]]
[78]
Kanade, T. 1973. Computer recognition of human faces. Birkhauser, Basel, Switzerland, and Stuttgart, Germany.]]
[79]
Kelly, M. D. 1970. Visual identification of people by computer. Tech. rep. AI-130, Stanford AI Project, Stanford, CA.]]
[80]
Kirby, M. and Sirovich, L. 1990. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. Patt. Anal. Mach. Intell. 12.]]
[81]
Klasen, L. and Li, H. 1998. Faceless identification. In Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 513--527.]]
[82]
Knight, B. and Johnston, A. 1997. The role of movement in face recognition. Vis. Cog. 4, 265--274.]]
[83]
Kruger, N., Potzsch, M., and Malsburg, C. v. d. 1997. Determination of face position and pose with a learned representation based on labelled graphs. Image Vis. Comput. 15, 665--673.]]
[84]
Kung, S. Y. and Taur, J. S. 1995. Decision-based neural networks with signal/image classification applications. IEEE Trans. Neural Netw. 6, 170--181.]]
[85]
Lades, M., Vorbruggen, J., Buhmann, J., Lange, J., Malsburg, C. v.d., Wurtz, R., and Konen, W. 1993. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42, 300--311.]]
[86]
Lanitis, A., Taylor, C. J., and Cootes, T. F. 1995. Automatic face identification system using flexible appearance models. Image Vis. Comput. 13, 393--401.]]
[87]
Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. 1997. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw. 8, 98--113.]]
[88]
Li, B. and Chellappa, R. 2001. Face verification through tracking facial features. J. Opt. Soc. Am. 18.]]
[89]
Li, S. Z. and Lu, J. 1999. Face recognition using the nearest feature line method. IEEE Trans. Neural Netw. 10, 439--443.]]
[90]
Li, Y., Gong, S., and Liddell, H. 2001a. Constructing facial identity surfaces in a nonlinear discriminating space. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.]]
[91]
Li, Y., Gong, S., and Liddell, H. 2001b. Modelling face dynamics across view and over time. In Proceedings, International Conference on Computer Vision.]]
[92]
Lin, S. H., Kung, S. Y., and Lin, L. J. 1997. Face recognition/detection by probabilistic decision-based neural network. IEEE Trans. Neural Netw. 8, 114--132.]]
[93]
Liu, C. and Wechsler, H. 2000a. Evolutionary pursuit and its application to face recognition. IEEE Trans. Patt. Anal. Mach. Intell. 22, 570--582.]]
[94]
Liu, C. and Wechsler, H. 2000b. Robust coding scheme for indexing and retrieval from large face databases. IEEE Trans. Image Process. 9, 132--137.]]
[95]
Liu, C. and Wechsler, H. 2001. A shape- and texture-based enhanced fisher classifier for face recognition. IEEE Trans. Image Process. 10, 598--608.]]
[96]
Liu, J. and Chen, R. 1998. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93, 1031--1041.]]
[97]
Manjunath, B. S., Chellappa, R., and Malsburg, C. v. d. 1992. A feature based approach to face recognition. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 373--378.]]
[98]
Marr, D. 1982. Vision. W. H. Freeman, San Francisco, CA.]]
[99]
Martinez, A. 2002. Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class. IEEE Trans. Patt. Anal. Mach. Intell. 24, 748--763.]]
[100]
Martinez, A. and Kak, A. C. 2001. PCA versus LDA. IEEE Trans. Patt. Anal. Mach. Intell. 23, 228--233.]]
[101]
Maurer, T. and Malsburg, C. v. d. 1996a. Single-view based recognition of faces rotated in depth. In Proceedings, International Workshop on Automatic Face and Gesture Recognition. 176--181.]]
[102]
Maurer, T. and Malsburg, C. v. d. 1996b. Tracking and learning graphs and pose on image sequences of faces. In Proceedings, International Conference on Automatic Face and Gesture Recognition. 176--181.]]
[103]
McKenna, S. J. and Gong, S. 1997. Non-intrusive person authentication for access control by visual tracking and face recognition. In Proceedings, International Conference on Audio- and Video-Based Person Authentication. 177--183.]]
[104]
McKenna, S. and Gong, S. 1998. Recognising moving faces. In Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 578--588.]]
[105]
Matas, J. et. al., 2000. Comparison of face verification results on the XM2VTS database. In Proceedings, International Conference on Pattern Recognition, Vol. 4, 858--863.]]
[106]
Messer, K., Matas, J., Kittler, J., Luettin, J., and Maitre, G. 1999. XM2VTSDB: The Extended M2VTS Database. In Proceedings, International Conference on Audio- and Video-Based Person Authentication. 72--77.]]
[107]
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., and Muller, K.-R. 1999. Fisher discriminant analysis with kernels. In Proceedings, IEEE Workshop on Neural Networks for Signal Processing.]]
[108]
Moghaddam, B., Nastar, C., and Pentland, A. 1996. A Bayesian similarity measure for direct image matching. In Proceedings, International Conference on Pattern Recognition.]]
[109]
Moghaddam, B. and Pentland, A. 1997. Probabilistic visual learning for object representation. IEEE Trans. Patt. Anal. Mach. Intell. 19, 696--710.]]
[110]
Moon, H. and Phillips, P. J. 2001. Computational and performance aspects of PCA-based face recognition algorithms. Perception, 30, 301--321.]]
[111]
Murase, H. and Nayar, S. 1995. Visual learning and recognition of 3D objects from appearances. Int. J. Comput. Vis. 14, 5--25.]]
[112]
Nefian, A. V. and Hayes III, M. H. 1998. Hidden Markov models for face recognition. In Proceedings, International Conference on Acoustics, Speech and Signal Processing. 2721--2724.]]
[113]
Okada, K., Steffans, J., Maurer, T., Hong, H., Elagin, E., Neven, H., and Malsburg, C. v. d. 1998. The Bochum/USC Face Recognition System and how it fared in the FERET Phase III Test. In Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 186--205.]]
[114]
O'Toole, A. J., Roark, D., and Abdi, H. 2002. Recognitizing moving faces. A psychological and neural synthesis. Trends Cogn. Sci. 6, 261--266.]]
[115]
Pantic, M. and Rothkrantz, L. J. M. 2000. Automatic analysis of facial expressions: The state of the art. IEEE Trans. Patt. Anal. Mach. Intell. 22, 1424--1446.]]
[116]
Penev, P. and Sirovich, L. 2000. The global dimensionality of face space. In Proceedings, International Conference on Automatic Face and Gesture Recognition.]]
[117]
Penev, P. and Atick, J. 1996. Local feature analysis: A general statistical theory for objecct representation. Netw.: Computat. Neural Syst. 7, 477--500.]]
[118]
Pentland, A., Moghaddam, B., and Starner, T. 1994. View-based and modular eigenspaces for face recognition. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.]]
[119]
Perkins, D. 1975. A definition of caricature and recognition. Stud. Anthro. Vis. Commun. 2, 1--24.]]
[120]
Phillips, P. J., Grother, P. J., Micheals, R. J., Blackburn, D. M., Tabassi, E., and Bone, J. M. 2003. Face recognition vendor test 2002: Evaluation report. NISTIR 6965, 2003. Available online at http://www.frvt.org.]]
[121]
Phillips, P. J. 1998. Support vector machines applied to face fecognition. Adv. Neural Inform. Process. Syst. 11, 803--809.]]
[122]
Phillips, P. J., McCabe, R. M., and Chellappa, R. 1998. Biometric image processing and recognition. In Proceedings, European Signal Processing Conference.]]
[123]
Phillips, P. J., Moon, H., Rizvi, S., and Rauss, P. 2000. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Patt. Anal. Mach. Intell. 22.]]
[124]
Phillips, P. J., Wechsler, H., Huang, J., and Rauss, P. 1998b. The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16, 295--306.]]
[125]
Pigeon, S. and Vandendorpe, L. 1999. The M2VTS multimodal face database (Release 1.00). In Proceedings, International Conference on Audio- and Video-Based Person Authentication. 403--409.]]
[126]
Riklin-Raviv, T. and Shashua, A. 1999. The quotient image: Class based re-rendering and recognition with varying illuminations. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 566--571.]]
[127]
Rizvi, S. A., Phillips, P. J., and Moon, H. 1998. A verification protocol and statistical performance analysis for face recognition algorithms. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 833--838.]]
[128]
Rowley, H. A., Baluja, S., and Kanade, T. 1998. Neural network based face detection. IEEE Trans. Patt. Anal. Mach. Intell. 20.]]
[129]
Choudhury, A. K. R. and Chellappa, R. 2003. Face reconstruction from monocular video using uncertainty analysis and a generic model. Comput. Vis. Image Understand. 91, 188--213.]]
[130]
Ruderman, D. L. 1994. The statistics of natural images. Netw.: Comput. Neural Syst. 5, 598--605.]]
[131]
Sali, E. and Ullman, S. 1998. Recognizing novel 3-D objects under new illumination and viewing position using a small number of example views or even a single view. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 153--161.]]
[132]
Samal, A. and Iyengar, P. 1992. Automatic recognition and analysis of human faces and facial expressions: A survey. Patt. Recog. 25, 65--77.]]
[133]
Samaria, F. 1994. Face recognition using hidden markov models. Ph.D. dissertation. University of Cambridge, Cambridge, U.K.]]
[134]
Samaria, F. and Young, S. 1994. HMM based architecture for face identification. Image Vis. Comput. 12, 537--583.]]
[135]
Schneiderman, H. and Kanade, T. 2000. Probabilistic modelling of local Appearance and spatial reationships for object recognition. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. 746--751.]]
[136]
Sergent, J. 1986. Microgenesis of face perception. In Aspects of Face Processing, H. D. Ellis, M. A. Jeeves, F. Newcombe, and A. Young, Eds. Nijhoff, Dordrecht, The Netherlands.]]
[137]
Shashua, A. 1994. Geometry and photometry in 3D visual recognition. Ph.D. dissertation. Massachusetts Institute of Technology, Cambridge, MA.]]
[138]
Shepherd, J. W., Davies, G. M., and Ellis, H. D. 1981. Studies of cue saliency. In Perceiving and Remembering Faces, G. M. Davies, H. D. Ellis, and J. W. Shepherd, Eds. Academic Press, London, U.K.]]
[139]
Shio, A. and Sklansky, J. 1991. Segmentation of people in motion. In Proceedings, IEEE Workshop on Visual Motion. 325--332.]]
[140]
Sirovich, L. and Kirby, M. 1987. Low-dimensional procedure for the characterization of human face. J. Opt. Soc. Am. 4, 519--524.]]
[141]
Steffens, J., Elagin, E., and Neven, H. 1998. PersonSpotter---fast and robust system for human detection, tracking and recognition. In Proceedings, International Conference on Automatic Face and Gesture Recognition. 516--521.]]
[142]
Strom, J., Jebara, T., Basu, S., and Pentland, A. 1999. Real time tracking and modeling of faces: An EKF-based analysis by synthesis approach. Tech. rep. TR-506, MIT Media Lab, Massachusetts, Institute of Technology, Cambridge, MA.]]
[143]
Sung, K. and Poggio, T. 1997. Example-based learning for view-based human face detection. IEEE Trans. Patt. Anal. Mach. Intell. 20, 39--51.]]
[144]
Swets, D. L. and Weng, J. 1996b. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Patt. Anal. Mach. Intell. 18, 831--836.]]
[145]
Swets, D. L. and Weng, J. 1996. Discriminant analysis and eigenspace partition tree for face and object recognition from views. In Proceedings, International Conference on Automatic Face and Gesture Recognition. 192--197.]]
[146]
Tarr, M. J. and Bulthoff, H. H. 1995. Is human object recognition better described by geon structural descriptions or by multiple views---comment on Biederman and Gerhardstein (1993). J. Exp. Psych.: Hum. Percep. Perf. 21, 71--86.]]
[147]
Terzopoulos, D. and Waters, K. 1993. Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. Patt. Anal. Mach. Intell. 15, 569--579.]]
[148]
Thompson, P. 1980. Margaret Thatcher---A new illusion. Perception, 9, 483--484.]]
[149]
Tsai, P. S. and Shah, M. 1994. Shape from shading using linear approximation. Image Vis. Comput. 12, 487--498.]]
[150]
Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. 2000. Bundle adjustment---a modern synthesis. In Vision Algorithms: Theory and Practice, Springer-Verlag, Berlin, Germany.]]
[151]
Turk, M. and Pentland, A. 1991. Eigenfaces for recognition. J. Cogn. Neurosci. 3, 72--86.]]
[152]
Ullman, S. and Basri, R. 1991. Recognition by linear combinations of models. IEEE Trans. Patt. Anal. Mach. Intell. 13, 992--1006.]]
[153]
Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY.]]
[154]
Vetter, T. and Poggio, T. 1997. Linear object classes and image synthesis from a single example image. IEEE Trans. Patt. Anal. Mach. Intell. 19, 733--742.]]
[155]
Viola, P. and Jones, M. 2001. Rapid object detection using a boosted cascade of simple features. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition.]]
[156]
Wechsler, H., Kakkad, V., Huang, J., Gutta, S., and Chen, V. 1997. Automatic video-based person authentication using the RBF network. In Proceedings, International Conference on Audio- and Video-Based Person Authentication. 85--92.]]
[157]
Wilder, J. 1994. Face recognition using transform coding of gray scale projection and the neural tree network. In Artificial Neural Networks with Applications in Speech and Vision, R. J. Mammone, Ed. Chapman Hall, New York, NY, 520--536.]]
[158]
Wiskott, L., Fellous, J.-M., and von der Malsburg, C. 1997. Face recognition by elastic bunch graph matching. IEEE Trans. Patt. Anal. Mach. Intell. 19, 775--779.]]
[159]
Yang, M. H., Kriegman, D., and Ahuja, N. 2002. Detecting faces in images: A survey. IEEE Trans. Patt. Anal. Mach. Intell. 24, 34--58.]]
[160]
Yin, R. K. 1969. Looking at upside-down faces. J. Exp, Psych. 81, 141--151.]]
[161]
Yuille, A. L., Cohen, D. S., and Hallinan, P. W. 1992. Feature extractiong from faces using deformable templates. Int. J. Comput. Vis. 8, 99--112.]]
[162]
Yuille, A. and Hallinan, P. 1992. Deformable templates. In Active vision, A. Blake, and A. Yuille, Eds., Cambridge, MA, 21--38.]]
[163]
Zhao, W. 1999. Robust Image Based 3D Face Recognition, Ph.D. dissertation. University of Maryland, College Park, MD.]]
[164]
Zhao, W. and Chellappa, R. 2000b. SFS Based View synthesis for robust face recognition. In Proceedings, International Conference on Automatic Face and Gesture Recognition.]]
[165]
Zhao, W. and Chellappa, R. 2000. Illumination-insensitive face recognition using symmetric shape-from-shading. In Proceedings, Conference on Computer Vision and Pattern Recognition. 286--293.]]
[166]
Zhao, W., Chellappa, R., and Krishnaswamy, A. 1998. Discriminant analysis of principal components for face recognition. In Proceedings, International Conference on Automatic Face and Gesture Recognition. 336--341.]]
[167]
Zhao, W., Chellappa, R., and Phillips, P. J. 1999. Subspace linear discriminant analysis for face recognition. Tech. rep. CAR-TR-914, Center for Automation Research, University of Maryland, College Park, MD.]]
[168]
Zhou, S., Krueger, V., and Chellappa, R. 2003. Probabilistic recognition of human faces from video. Comput. Vis. Image Understand. 91, 214--245.]]

Cited By

View all
  • (2025)Beyond the visible: A survey on cross-spectral face recognitionNeurocomputing10.1016/j.neucom.2024.128626611(128626)Online publication date: Jan-2025
  • (2024)Facial expression recognition (FER) survey: a vision, architectural elements, and future directionsPeerJ Computer Science10.7717/peerj-cs.202410(e2024)Online publication date: 3-Jun-2024
  • (2024)A two-stage clustering-based distributed framework for large-scale face identificationSignal and Data Processing10.61186/jsdp.21.1.5321:1(53-70)Online publication date: 1-Jun-2024
  • Show More Cited By

Index Terms

  1. Face recognition: A literature survey

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 35, Issue 4
    December 2003
    129 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/954339
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 December 2003
    Published in CSUR Volume 35, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Face recognition
    2. person identification

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1,512
    • Downloads (Last 6 weeks)268
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Beyond the visible: A survey on cross-spectral face recognitionNeurocomputing10.1016/j.neucom.2024.128626611(128626)Online publication date: Jan-2025
    • (2024)Facial expression recognition (FER) survey: a vision, architectural elements, and future directionsPeerJ Computer Science10.7717/peerj-cs.202410(e2024)Online publication date: 3-Jun-2024
    • (2024)A two-stage clustering-based distributed framework for large-scale face identificationSignal and Data Processing10.61186/jsdp.21.1.5321:1(53-70)Online publication date: 1-Jun-2024
    • (2024)“Face Log” (Attendance Management System using Face Recognition)International Journal of Advanced Research in Science, Communication and Technology10.48175/IJARSCT-15535(182-187)Online publication date: 29-Feb-2024
    • (2024)Performance Metrics for Neurosensory Marketing StrategiesNeurosensory and Neuromarketing Impacts on Consumer Behavior10.4018/979-8-3693-8222-6.ch012(265-294)Online publication date: 4-Oct-2024
    • (2024)Complex Face Emotion Recognition Using Computer Vision and Machine LearningHarnessing Artificial Emotional Intelligence for Improved Human-Computer Interactions10.4018/979-8-3693-2794-4.ch011(180-196)Online publication date: 28-Jun-2024
    • (2024)Development of a Patient–Radiopharmaceutical Matching System Using Smartphone to Prevent Misadministration: Feasibility Studyスマートフォンを用いた誤投与防止のための患者–放射性医薬品照合システムの開発—実現可能性検討—RADIOISOTOPES10.3769/radioisotopes.73.6973:1(69-80)Online publication date: 15-Mar-2024
    • (2024)Deep Learning System for User Identification Using Sensors on DoorknobsSensors10.3390/s2415507224:15(5072)Online publication date: 5-Aug-2024
    • (2024)An Edge Computing System with AMD Xilinx FPGA AI Customer Platform for Advanced Driver Assistance SystemSensors10.3390/s2410309824:10(3098)Online publication date: 13-May-2024
    • (2024)HyperFace: A Deep Fusion Model for Hyperspectral Face RecognitionSensors10.3390/s2409278524:9(2785)Online publication date: 27-Apr-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media