[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3528535.3565249acmconferencesArticle/Chapter ViewAbstractPublication PagesmiddlewareConference Proceedingsconference-collections
research-article

Optimizing communication in deep reinforcement learning with XingTian

Published: 08 November 2022 Publication History

Abstract

Deep Reinforcement Learning (DRL) achieves great success in various domains. Communication in today's DRL algorithms takes non-negligible time compared to the computation. However, prior DRL frameworks usually focus on computation management while paying little attention to communication optimization, and fail to utilize the opportunity of the communication-computation overlap that hides the communication from the critical path of DRL algorithms. Consequently, communication can take more time than the computation in prior DRL frameworks. In this paper, we present XingTian, a novel DRL framework that co-designs the management of communication and computation in DRL algorithms. XingTian organizes the computation in DRL algorithms in a decentralized way and provides an asynchronous communication channel. XingTian makes the communication execute asynchronously and aggressively and takes advantage of the communication-computation overlapping opportunity from DRL algorithms. Experimental results show that XingTian improves data transmission efficiency and can transmit at least twice as much data per second as the state-of-the-art DRL framework RLLib. DRL algorithms based on XingTian achieve up to 70.71% more throughput than RLLib-based ones with better or similar convergent performance. XingTian maintains high communication efficiency under different scale deployments and the XingTian-based DRL algorithm achieves 91.12% higher throughput than the RLLib-based one when deployed in four machines. XingTian is open-sourced and publicly available at https://github.com/huawei-noah/xingtian.

References

[1]
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (Savannah, GA, USA, November 2--4) (OSDI 2016). USENIX Association, USA, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
[2]
Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. 2020. Learning dexterous in-hand manipulation. The International Journal of Robotics Research 39, 1 (2020), 3--20.
[3]
Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. 2017. Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU. In Proceedings of the 5th International Conference on Learning Representations (Toulon, France, April 24--26, 2017) (ICLR 2017). OpenReview.net, USA. https://openreview.net/forum?id=r1VGvBcxl
[4]
Richard Bellman. 1957. A Markovian decision process. Journal of mathematics and mechanics 6, 5 (1957), 679--684.
[5]
Dimitri P Bertsekas. 2011. Dynamic programming and optimal control 3rd edition, volume II. Belmont, MA: Athena Scientific (2011).
[6]
Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[7]
Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. 2017. Reinforcement Learning Coach. Retrieved May 13, 2022 from
[8]
Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos, Toby Boyd, Thibault Sottiaux, and Manuel Kroiss. 2021. Reverb: A Framework For Experience Replay. arXiv preprint arXiv:2102.04736 (2021).
[9]
Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Bellemare. 2018. Dopamine: A research framework for deep reinforcement learning. arXiv preprint arXiv:1812.06110 (2018).
[10]
Alfredo V Clemente, Humberto N Castejón, and Arjun Chandra. 2017. Efficient parallel methods for deep reinforcement learning. arXiv preprint arXiv:1705.04862 (2017).
[11]
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. 2017. OpenAI Baselines. Retrieved May 15, 2022 from https://github.com/openai/baselines
[12]
Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. 2020. SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. In Proceedings of the 8th International Conference on Learning Representations (Addis Ababa, Ethiopia, April 26--30, 2020) (ICLR 2020,). OpenReview.net, USA. https://openreview.net/forum?id=rkgvXlrKwH
[13]
Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. 2018. IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. In Proceedings of the 35th International Conference on Machine Learning (Stockholmsmässan, Stockholm, Sweden, July 10--15, 2018) (ICML 2018, Vol. 80). PMLR, USA, 1406--1415. http://proceedings.mlr.press/v80/espeholt18a.html
[14]
Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio Savarese, and Li Fei-Fei. 2018. SURREAL: Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark. In Proceedings of the 2nd Annual Conference on Robot Learning (Zürich, Switzerland, 29--31 October 2018) (CoRL 2018, Vol. 87). PMLR, USA, 767--782. http://proceedings.mlr.press/v87/fan18a.html
[15]
The garage contributors. 2019. Garage: A toolkit for reproducible reinforcement learning research. Retrieved May 13, 2022 from https://github.com/rlworkgroup/garage
[16]
Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary Kaden, Vivek Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. 2018. Horizon: Facebook's open source applied reinforcement learning platform. arXiv preprint arXiv:1811.00260 (2018).
[17]
Danijar Hafner, James Davidson, and Vincent Vanhoucke. 2017. Tensorflow agents: Efficient batched reinforcement learning in tensorflow. arXiv preprint arXiv:1709.02878 (2017).
[18]
Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. 2017. Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017).
[19]
Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. 2018. Rainbow: Combining Improvements in Deep Reinforcement Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (New Orleans, Louisiana, USA, February 2--7, 2018) (AAAI-18). AAAI Press, USA, 3215--3222. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
[20]
Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. 2020. Acme: A Research Framework for Distributed Reinforcement Learning. arXiv preprint arXiv:2006.00979 (2020). https://arxiv.org/abs/2006.00979
[21]
Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and David Silver. 2018. Distributed Prioritized Experience Replay. In Proceedings of the 6th International Conference on Learning Representations (Vancouver, BC, Canada, April 30 - May 3, 2018) (ICLR 2018). OpenReview.net, USA. https://openreview.net/forum?id=H1Dy-0Z
[22]
Huawei. 2020. MindSpore. Retrieved May 13, 2022 from https://www.mindspore.cn/
[23]
Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. 2019. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 364, 6443 (2019), 859--865.
[24]
John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 7873 (01 Aug 2021), 583--589.
[25]
Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski. 2020. Model Based Reinforcement Learning for Atari. In Proceedings of the 8th International Conference on Learning Representations (Addis Ababa, Ethiopia, April 26--30, 2020) (ICLR 2020). OpenReview.net, USA. https://openreview.net/forum?id=S1xCPJHtDB
[26]
Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. 2019. Recurrent Experience Replay in Distributed Reinforcement Learning. In Proceedings of the 7th International Conference on Learning Representations (New Orleans, LA, USA, May 6--9, 2019) (ICLR 2019). OpenReview.net, USA. https://openreview.net/forum?id=r1lyTjAqYX
[27]
Vijay R. Konda and John N. Tsitsiklis. 1999. Actor-Critic Algorithms. In Proceedings of the Advances in Neural Information Processing Systems (Denver, Colorado, USA, November 29 - December 4, 1999) (NIPS Conference 1999). The MIT Press, USA, 1008--1014. http://papers.nips.cc/paper/1786-actor-critic-algorithms
[28]
Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. 2017. Tensorforce: a TensorFlow library for applied reinforcement learning. Retrieved May 14, 2022 from https://github.com/tensorforce/tensorforce
[29]
Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar, Tim Rocktäschel, and Edward Grefenstette. 2019. Torchbeast: A pytorch platform for distributed rl. arXiv preprint arXiv:1910.03552 (2019).
[30]
Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib: Abstractions for Distributed Reinforcement Learning. In Proceedings of the 35th International Conference on Machine Learning (Stockholmsmässan, Stockholm, Sweden, July 10--15, 2018) (ICML 2018, Vol. 80). PMLR, USA, 3059--3068. http://proceedings.mlr.press/v80/liang18b.html
[31]
Eric Liang, Zhanghao Wu, Michael Luo, Sven Mika, Joseph E. Gonzalez, and Ion Stoica. 2021. RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem. In Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021 (Virtual Event, December 6--14, 2021) (NeurIPS 2021). USA, 5506--5517. https://proceedings.neurips.cc/paper/2021/hash/2bce32ed409f5ebcee2a7b417ad9beed-Abstract.html
[32]
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control with deep reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations (San Juan, Puerto Rico, May 2--4, 2016) (ICLR 2016). USA. http://arxiv.org/abs/1509.02971
[33]
Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. 2018. Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (Brisbane, Australia, May 21--25, 2018) (ICRA 2018). IEEE, USA, 6252--6259.
[34]
Amjad Yousef Majid, Serge Saaybi, Tomas van Rietbergen, Vincent Francois-Lavet, R Venkatesha Prasad, and Chris Verhoeven. 2021. Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey. arXiv preprint arXiv:2110.01411 (2021).
[35]
Hangyu Mao, Wulong Liu, Jianye Hao, Jun Luo, Dong Li, Zhengchao Zhang, Jun Wang, and Zhen Xiao. 2020. Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (New York, NY, USA, February 7--12, 2020) (AAAI 2020). AAAI Press, USA, 7219--7226. https://ojs.aaai.org/index.php/AAAI/article/view/6212
[36]
Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. 2020. Learning Agent Communication under Limited Bandwidth by Message Pruning. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (New York, NY, USA, February 7--12, 2020) (AAAI 2020). AAAI Press, USA, 5142--5149. https://ojs.aaai.org/index.php/AAAI/article/view/5957
[37]
Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd International Conference on Machine Learning (New York City, NY, USA, June 19--24, 2016) (ICML 2016, Vol. 48). JMLR.org, USA, 1928--1937. http://proceedings.mlr.press/v48/mniha16.html
[38]
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[39]
Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications. In Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation (Carlsbad, CA, USA, October 8--10, 2018) (OSDI 2018). USENIX Association, USA, 561--577.
[40]
Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. 2015. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296 (2015).
[41]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019 (Vancouver, BC, Canada, December 8--14, 2019) (NeurIPS 2019). USA, 8024--8035. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
[42]
Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. 2020. Sample Factory: Egocentric 3D Control from Pixels at 100000 FPS with Asynchronous Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning (Virtual Event, 13--18 July 2020) (ICML 2020, Vol. 119). PMLR, USA, 7652--7662. http://proceedings.mlr.press/v119/petrenko20a.html
[43]
Matthias Plappert. 2016. keras-rl. Retrieved May 13, 2022 from https://github.com/keras-rl/keras-rl
[44]
Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann. 2019. Stable Baselines3. Retrieved May 13, 2022 from https://github.com/DLR-RM/stable-baselines3
[45]
Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using connectionist systems. Vol. 37. Citeseer.
[46]
Michael Schaarschmidt, Sven Mika, Kai Fricke, and Eiko Yoneki. 2019. RLgraph: Modular Computation Graphs for Deep Reinforcement Learning. In Proceedings of Machine Learning and Systems 2019 (Stanford, CA, USA, March 31 - April 2, 2019) (Mlsys 2019). mlsys.org, USA, 65--80. https://proceedings.mlsys.org/book/279.pdf
[47]
Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized Experience Replay. In Proceedings of the 4th International Conference on Learning Representations (San Juan, Puerto Rico, May 2--4, 2016) (ICLR 2016). USA. http://arxiv.org/abs/1511.05952
[48]
Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with a learned model. Nature 588, 7839 (2020), 604--609.
[49]
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).
[50]
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural networks and tree search. nature 529, 7587 (2016), 484--489.
[51]
David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140--1144.
[52]
David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. 2017. Mastering the game of go without human knowledge. nature 550, 7676 (2017), 354--359.
[53]
Adam Stooke and Pieter Abbeel. 2018. Accelerated methods for deep reinforcement learning. arXiv preprint arXiv:1803.02811 (2018).
[54]
Adam Stooke and Pieter Abbeel. 2019. rlpyt: A research code base for deep reinforcement learning in pytorch. arXiv preprint arXiv:1909.01500 (2019).
[55]
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
[56]
Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. 1999. Policy Gradient Methods for Reinforcement Learning with Function Approximation. In Proceedings of the Advances in Neural Information Processing Systems (Denver, Colorado, USA, November 29 - December 4, 1999) (NIPS Conference 1999). The MIT Press, USA, 1057--1063. http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
[57]
Apache Arrow Development Team. 2021. Apache Arrow. Retrieved May 13, 2022 from https://arrow.apache.org/
[58]
Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang Su, and Jun Zhu. 2022. Tianshou: A Highly Modularized Deep Reinforcement Learning Library. Journal of Machine Learning Research 23, 267 (2022), 1--6. http://jmlr.org/papers/v23/21-1127.html
[59]
Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8, 3 (1992), 229--256.
[60]
Mingzhe Xing, Hangyu Mao, and Zhen Xiao. 2022. Fast and Fine-grained Autoscaler for Streaming Jobs with Reinforcement Learning. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (Vienna, Austria, 23--29 July 2022) (IJCAI 2022). ijcai.org, USA, 564--570.
[61]
Fan Yang, Gabriel Barth-Maron, Piotr Stańczyk, Matthew Hoffman, Siqi Liu, Manuel Kroiss, Aedan Pope, and Alban Rrustemi. 2021. Launchpad: A Programming Model for Distributed Machine Learning Research. arXiv preprint arXiv:2106.04516 (2021).
[62]
Jiale Zhi, Rui Wang, Jeff Clune, and Kenneth O Stanley. 2020. Fiber: A platform for efficient development and distributed training for reinforcement learning and population-based methods. arXiv preprint arXiv:2003.11164 (2020).

Cited By

View all
  • (2023)High-throughput Sampling, Communicating and Training for Reinforcement Learning Systems2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS)10.1109/IWQoS57198.2023.10188703(1-10)Online publication date: 19-Jun-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
Middleware '22: Proceedings of the 23rd ACM/IFIP International Middleware Conference
November 2022
110 pages
ISBN:9781450393409
DOI:10.1145/3528535
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 November 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. asynchronous communication
  2. communication-computation overlap
  3. decentralized computation
  4. deep reinforcement learning

Qualifiers

  • Research-article

Conference

Middleware '22
Sponsor:
Middleware '22: 23rd International Middleware Conference
November 7 - 11, 2022
QC, Quebec, Canada

Acceptance Rates

Middleware '22 Paper Acceptance Rate 8 of 21 submissions, 38%;
Overall Acceptance Rate 203 of 948 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)25
  • Downloads (Last 6 weeks)2
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)High-throughput Sampling, Communicating and Training for Reinforcement Learning Systems2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS)10.1109/IWQoS57198.2023.10188703(1-10)Online publication date: 19-Jun-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media