[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

AutoMate: a dataset and learning approach for automatic mating of CAD assemblies

Published: 10 December 2021 Publication History

Abstract

Assembly modeling is a core task of computer aided design (CAD), comprising around one third of the work in a CAD workflow. Optimizing this process therefore represents a huge opportunity in the design of a CAD system, but current research of assembly based modeling is not directly applicable to modern CAD systems because it eschews the dominant data structure of modern CAD: parametric boundary representations (BREPs). CAD assembly modeling defines assemblies as a system of pairwise constraints, called mates, between parts, which are defined relative to BREP topology rather than in world coordinates common to existing work. We propose SB-GCN, a representation learning scheme on BREPs that retains the topological structure of parts, and use these learned representations to predict CAD type mates. To train our system, we compiled the first large scale dataset of BREP CAD assemblies, which we are releasing along with benchmark mate prediction tasks. Finally, we demonstrate the compatibility of our model with an existing commercial CAD system by building a tool that assists users in mate creation by suggesting mate completions, with 72.2% accuracy.

References

[1]
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine 34, 4 (July 2017), 18--42.
[2]
Weijuan Cao, Trevor Robinson, Yang Hua, Flavien Boussuge, Andrew R. Colligan, and Wanbin Pan. 2020. Graph Representation of 3D CAD Models for Machining Feature Recognition With Deep Learning (International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 11A: 46th Design Automation Conference (DAC)).
[3]
Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. 2011. ACM Transactions on Graphics (SIGGRAPH).
[4]
Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven suggestions for creativity support in 3D modeling. ACM Transactions on Graphics 29, 6 (Dec. 2010), 183:1--183:10.
[5]
Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. arXiv:1903.02428 [cs, stat] (April 2019). http://arxiv.org/abs/1903.02428 arXiv: 1903.02428.
[6]
Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by example. In ACM SIGGRAPH 2004 Papers (SIGGRAPH '04). Association for Computing Machinery, New York, NY, USA, 652--663.
[7]
Diego Gonzalez and Oliver van Kaick. 2018. 3D synthesis of man-made objects based on fine-grained parts. Computers & Graphics 74 (Aug. 2018), 150--160.
[8]
Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2018. PCPNET: Learning Local Shape Properties from Raw Point Clouds. Computer Graphics Forum 37, 2 (May 2018), 75--85. arXiv: 1710.04954.
[9]
Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. 2019. Meshcnn: A Network with an Edge. ACM Transactions on Graphics 38, 4 (July 2019), 90:1--90:12.
[10]
Jilei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas J. Guibas, and Hao Dong. 2020. Generative 3D Part Assembly via Dynamic Graph Learning. Advances in Neural Information Processing Systems 33 (2020). https://proceedings.neurips.cc/paper/2020/hash/45fbc6d3e05ebd93369ce542e8f2322d-Abstract.html
[11]
Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G Lambourne, Karl DD Willis, Thomas Davies, Hooman Shayani, and Nigel Morris. 2021. UV-Net: Learning From Boundary Representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11703--11712.
[12]
R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: learning to generate programs for 3D shape structure synthesis. ACM Transactions on Graphics 39, 6 (Nov. 2020), 234:1--234:20.
[13]
Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In International Conference on Learning Representations (ICLR). http://arxiv.org/abs/1609.02907 arXiv: 1609.02907.
[14]
Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big CAD Model Dataset for Geometric Deep Learning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA, 9593--9603.
[15]
Joseph G. Lambourne, Karl D. D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer, and Hooman Shayani. 2021. BRepNet: A topological message passing system for solid models. arXiv:2104.00706 [cs] (April 2021). http://arxiv.org/abs/2104.00706 arXiv: 2104.00706.
[16]
Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. DeepGCNs: Can GCNs Go As Deep As CNNs?. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Seoul, Korea (South), 9266--9275.
[17]
Yichen Li, Kaichun Mo, Lin Shao, Minhyuk Sung, and Leonidas Guibas. 2020. Learning 3d part assembly from a single image. In European Conference on Computer Vision. Springer, 664--682.
[18]
Hubert Lin, Melinos Averkiou, Evangelos Kalogerakis, Balazs Kovacs, Siddhant Ranade, Vladimir G. Kim, Siddhartha Chaudhuri, and Kavita Bala. 2018. Learning Material-Aware Local Descriptors for 3D Shapes. 2018 International Conference on 3D Vision (3DV) (Sept. 2018), 150--159. arXiv: 1810.08729.
[19]
Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and Leonidas J. Guibas. 2019a. Structurenet: Hierarchical Graph Networks for 3d Shape Generation. ACM Transactions on Graphics 38, 6 (Nov. 2019), 242:1--242:19.
[20]
Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and Leonidas J. Guibas. 2020a. StructEdit: Learning Structural Shape Variations. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, USA, 8856--8865.
[21]
Kaichun Mo, He Wang, Xinchen Yan, and Leonidas Guibas. 2020b. PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree Conditions. In Computer Vision - ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Vol. 12351. Springer International Publishing, Cham, 683--701. Series Title: Lecture Notes in Computer Science.
[22]
Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su. 2019b. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA, 909--918.
[23]
UX Team Onshape. 2020. Personal Communication.
[24]
PTC Inc. [n.d.]. Onshape. https://www.onshape.com
[25]
Charles R. Qi, Hao Su, Mo Kaichun, and Leonidas J. Guibas. 2017a. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HI, 77--85.
[26]
Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017b. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv:1706.02413 [cs] (June 2017). http://arxiv.org/abs/1706.02413 arXiv: 1706.02413.
[27]
Adriana Schulz, Ariel Shamir, David IW Levin, Pitchaya Sitthi-Amorn, and Wojciech Matusik. 2014. Design and fabrication by example. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.
[28]
Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P. Adams. 2020. SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in Computer-Aided Design. arXiv:2007.08506 [cs, stat] (July 2020). http://arxiv.org/abs/2007.08506 arXiv: 2007.08506.
[29]
Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-Or. 2006. Snap-Paste: an interactive technique for easy mesh composition. The Visual Computer 22, 9 (Sept. 2006), 835--844.
[30]
Siemens AG. [n.d.]. Parasolid. https://www.siemens.com/
[31]
Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha Chaudhuri, and Leonidas Guibas. 2017. ComplementMe: Weakly-Supervised Component Suggestions for 3D Modeling. ACM Transactions on Graphics 36, 6 (Nov. 2017), 1--12. arXiv: 1708.01841.
[32]
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics 38, 5 (Oct. 2019), 146:1--146:12.
[33]
Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik. 2020. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Reconstruction. arXiv:2010.02392 [cs] (Oct. 2020). http://arxiv.org/abs/2010.02392 arXiv: 2010.02392.
[34]
Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. 2020b. PQ-NET: A Generative Part Seq2Seq Network for 3D Shapes. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, USA, 826--835.
[35]
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2020a. A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems (2020), 1--21. Conference Name: IEEE Transactions on Neural Networks and Learning Systems.
[36]
Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. 2019. SAGNet: structure-aware generative network for 3D-shape modeling. ACM Transactions on Graphics 38, 4 (July 2019), 91:1--91:14.
[37]
Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J. Guibas, and Lin Gao. 2020. DSM-Net: Disentangled Structured Mesh Net for Controllable Generation of Fine Geometry. arXiv:2008.05440 [cs] (Aug. 2020). http://arxiv.org/abs/2008.05440 arXiv: 2008.05440.
[38]
Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir G. Kim, and Hao Zhang. 2020. COALESCE: Component Assembly by Learning to Synthesize Connections. arXiv:2008.01936 [cs] (Nov. 2020). http://arxiv.org/abs/2008.01936 arXiv: 2008.01936.
[39]
Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangyong Zhu. 2018. Deep Collective Classification in Heterogeneous Information Networks. In Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW '18. ACM Press, Lyon, France, 399--408.
[40]
Z. Zhang, P. Cui, and W. Zhu. 2020. Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering (2020), 1--1. Conference Name: IEEE Transactions on Knowledge and Data Engineering.
[41]
Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. 2018. SCORES: Shape Composition with Recursive Substructure Priors. ACM Trans. Graph. 37, 6 (Dec. 2018), 211:1--211:14.

Cited By

View all
  • (2025)Multi-part kinematic constraint prediction for automatic generation of CAD model assemblies using graph convolutional networksComputer-Aided Design10.1016/j.cad.2024.103805178(103805)Online publication date: Jan-2025
  • (2024)Learn to Create Simple LEGO Micro BuildingsACM Transactions on Graphics10.1145/368775543:6(1-13)Online publication date: 19-Dec-2024
  • (2024)BrepGen: A B-rep Generative Diffusion Model with Structured Latent GeometryACM Transactions on Graphics10.1145/365812943:4(1-14)Online publication date: 19-Jul-2024
  • Show More Cited By

Index Terms

  1. AutoMate: a dataset and learning approach for automatic mating of CAD assemblies

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 6
      December 2021
      1351 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3478513
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 10 December 2021
      Published in TOG Volume 40, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. assembly-based modeling
      2. boundary representation
      3. computer-aided design
      4. representation learning

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)288
      • Downloads (Last 6 weeks)49
      Reflects downloads up to 10 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Multi-part kinematic constraint prediction for automatic generation of CAD model assemblies using graph convolutional networksComputer-Aided Design10.1016/j.cad.2024.103805178(103805)Online publication date: Jan-2025
      • (2024)Learn to Create Simple LEGO Micro BuildingsACM Transactions on Graphics10.1145/368775543:6(1-13)Online publication date: 19-Dec-2024
      • (2024)BrepGen: A B-rep Generative Diffusion Model with Structured Latent GeometryACM Transactions on Graphics10.1145/365812943:4(1-14)Online publication date: 19-Jul-2024
      • (2024)FabHacks: Transform Everyday Objects into Home Hacks Leveraging a Solver-aided DSLProceedings of the 9th ACM Symposium on Computational Fabrication10.1145/3639473.3665788(1-16)Online publication date: 7-Jul-2024
      • (2024)Fracture Assembly with Segmentation And Iterative RegistrationICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP48485.2024.10447659(6945-6949)Online publication date: 14-Apr-2024
      • (2024)A Survey of Methods for Converting Unstructured Data to CSG ModelsComputer-Aided Design10.1016/j.cad.2023.103655168:COnline publication date: 12-Apr-2024
      • (2024)Interface-Based Search and Automatic Reassembly of CAD Models for Database Expansion and Model ReuseComputer-Aided Design10.1016/j.cad.2023.103630167:COnline publication date: 4-Mar-2024
      • (2024)PairingNet: A Learning-Based Pair-Searching and -Matching Network for Image FragmentsComputer Vision – ECCV 202410.1007/978-3-031-73202-7_14(234-251)Online publication date: 21-Nov-2024
      • (2024)Learning to Build by Building Your Own InstructionsComputer Vision – ECCV 202410.1007/978-3-031-73024-5_16(261-278)Online publication date: 24-Nov-2024
      • (2023)An Intelligent Identification Approach of Assembly Interface for CAD ModelsComputer Modeling in Engineering & Sciences10.32604/cmes.2023.027320137:1(859-878)Online publication date: 2023
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media