[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc

Published: 26 June 2021 Publication History

Abstract

SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. Over the past few years, we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The article discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers.

References

[1]
P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. 2001. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 1 (2001), 15–41.
[2]
J. C. Araujo, C. Campos, C. Engström, and J. E. Roman. 2020. Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures. J. Comput. Phys. 407 (2020), 109220.
[3]
S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, and H. Zhang. 2020. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.13. Argonne National Laboratory.
[4]
W.-J. Beyn, C. Effenberger, and D. Kressner. 2011. Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems. Numer. Math. 119, 3 (2011), 489–516.
[5]
Y. Brûlé, B. Gralak, and G. Demésy. 2016. Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals. J. Opt. Soc. Am. B 33, 4 (2016), 691–702.
[6]
C. Campos and J. E. Roman. 2016. Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38, 5 (2016), S385–S411.
[7]
C. Campos and J. E. Roman. 2020. A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation. BIT Numer. Math. 60, 2 (2020), 295–318.
[8]
G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, and J. E. Roman. 2020. Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures. Comput. Phys. Commun. 257 (2020), 107509.
[9]
F. M. Dopico and J. González-Pizarro. 2018. A compact rational Krylov method for large-scale rational eigenvalue problems. Numer. Lin. Algebr. Appl. 26, 1 (2018), e2214.
[10]
C. Effenberger. 2013. Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34, 3 (2013), 1231–1256.
[11]
C. Effenberger and D. Kressner. 2012. Chebyshev interpolation for nonlinear eigenvalue problems. BIT Numer. Math. 52, 4 (2012), 933–951.
[12]
S. Elsworth and S. Güttel. 2019. Conversions between barycentric, RKFUN, and Newton representations of rational interpolants. Lin. Algebr. Appl. 576 (2019), 246–257.
[13]
B. Gavin, A. Międlar, and E. Polizzi. 2018. FEAST eigensolver for nonlinear eigenvalue problems. J. Comput. Sci. 27 (2018), 107–117.
[14]
S. Güttel, G. M. Negri Porzio, and F. Tisseur. 2020. Robust Rational Approximations of Nonlinear Eigenvalue Problems. Technical Report MIMS EPrint 2020.24. The University of Manchester. Retrieved from http://eprints.maths.manchester.ac.uk/2796/.
[15]
S. Güttel and F. Tisseur. 2017. The nonlinear eigenvalue problem. Acta Numer. 26 (2017), 1–94.
[16]
S. Güttel, R. van Beeumen, K. Meerbergen, and W. Michiels. 2014. NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 36, 6 (2014), A2842–A2864.
[17]
V. Hernandez, J. E. Roman, and A. Tomas. 2007. Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33, 7–8 (2007), 521–540.
[18]
V. Hernandez, J. E. Roman, and V. Vidal. 2005. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 3 (2005), 351–362.
[19]
N. J. Higham. 2008. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA.
[20]
E. Jarlebring. 2008. The Spectrum of Delay-differential Equations: Numerical Methods, Stability and Perturbation. Ph.D. Dissertation. TU Carolo-Wilhelmina zu Braunschweig.
[21]
E. Jarlebring, M. Bennedich, G. Mele, E. Ringh, and P. Upadhyaya. 2018. NEP-PACK: A Julia package for nonlinear eigenproblems, v0.2. arXiv:1811.09592. Retrieved from https://arxiv.org/abs/1811.09592.
[22]
D. Kressner. 2009. A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 2 (2009), 355–372.
[23]
B.-S. Liao, Z. Bai, L.-Q. Lee, and K. Ko. 2010. Nonlinear Rayleigh-Ritz iterative method for solving large scale nonlinear eigenvalue problems. Taiwan. J. Math. 14, 3A (2010), 869–883.
[24]
P. Lietaert, K. Meerbergen, and F. Tisseur. 2018. Compact two-sided Krylov methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 40, 5 (2018), A2801–A2829.
[25]
V. Mehrmann and H. Voss. 2004. Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods. GAMM Mitt. 27, 2 (2004), 121–152.
[26]
G. Mele and E. Jarlebring. 2018. On restarting the tensor infinite Arnoldi method. BIT Numer. Math. 58, 1 (2018), 133–162.
[27]
W. Michiels and S.-I. Niculescu. 2014. Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach (2nd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA.
[28]
Y. Nakatsukasa, O. Sète, and L. N. Trefethen. 2018. The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, 3 (2018), A1494–A1522.
[29]
A. Neumaier. 1985. Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22, 5 (1985), 914–923.
[30]
J. E. Roman, C. Campos, E. Romero, and A. Tomas. 2019. SLEPc Users Manual. Technical Report DSIC-II/24/02–Revision 3.12. D. Sistemes Informàtics i Computació, Universitat Politècnica de València.
[31]
A. Ruhe. 1973. Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 4 (1973), 674–689.
[32]
A. Ruhe. 1984. Rational Krylov sequence methods for eigenvalue computation. Lin. Algebr. Appl. 58 (1984), 391–405.
[33]
S. I. Solov’ëv. 2006. Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Lin. Algebr. Appl. 415, 1 (2006), 210–229.
[34]
G. W. Stewart. 2001. A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 3 (2001), 601–614.
[35]
Y. Su and Z. Bai. 2011. Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32, 1 (2011), 201–216.
[36]
F. Tisseur. 2000. Backward error and condition of polynomial eigenvalue problems. Lin. Algebr. Appl. 309, 1–3 (2000), 339–361.
[37]
R. van Beeumen, O. Marques, E. G. Ng, C. Yang, Z. Bai, L. Ge, O. Kononenko, Z. Li, C.-K. Ng, and L. Xiao. 2018. Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation. J. Comput. Phys. 374 (2018), 1031–1043.
[38]
R. van Beeumen, K. Meerbergen, and W. Michiels. 2015. Compact rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 2 (2015), 820–838.
[39]
W. G. Vandenberghe, M. V. Fischetti, R. van Beeumen, K. Meerbergen, W. Michiels, and C. Effenberger. 2014. Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver. J. Comput. Electron. 13, 3 (2014), 753–762.
[40]
H. Voss. 2004. An Arnoldi method for nonlinear eigenvalue problems. BIT Numer. Math. 44, 2 (2004), 387–401.
[41]
F. Xue. 2018. A block preconditioned harmonic projection method for large-scale nonlinear eigenvalue problems. SIAM J. Sci. Comput. 40, 3 (2018), A1809–A1835.
[42]
F. Zolla, A. Nicolet, and G. Demésy. 2018. Photonics in highly dispersive media: The exact modal expansion. Opt. Lett. 43, 23 (2018), 5813–5816.
[43]
I. N. Zwaan and M. E. Hochstenbach. 2017. Krylov–Schur-type restarts for the two-sided Arnoldi method. SIAM J. Matrix Anal. Appl. 38, 2 (2017), 297–321.

Cited By

View all
  • (2025)Computation of leaky waves in layered structures coupled to unbounded media by exploiting multiparameter eigenvalue problemsJournal of Sound and Vibration10.1016/j.jsv.2024.118716596(118716)Online publication date: Feb-2025
  • (2023)Improvements to SLEPc in Releases 3.14–3.18ACM Transactions on Mathematical Software10.1145/360337349:3(1-11)Online publication date: 19-Sep-2023
  • (2023)Physically agnostic quasi normal mode expansion in time dispersive structures: From mechanical vibrations to nanophotonic resonancesEuropean Journal of Mechanics - A/Solids10.1016/j.euromechsol.2022.104809100(104809)Online publication date: Jul-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 47, Issue 3
September 2021
251 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3472960
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 June 2021
Accepted: 01 January 2021
Revised: 01 July 2020
Received: 01 October 2019
Published in TOMS Volume 47, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Eigenvalue computations
  2. SLEPc
  3. message-passing parallelization
  4. nonlinear eigenvalue problem

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Agencia Estatal de Investigación

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)24
  • Downloads (Last 6 weeks)4
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Computation of leaky waves in layered structures coupled to unbounded media by exploiting multiparameter eigenvalue problemsJournal of Sound and Vibration10.1016/j.jsv.2024.118716596(118716)Online publication date: Feb-2025
  • (2023)Improvements to SLEPc in Releases 3.14–3.18ACM Transactions on Mathematical Software10.1145/360337349:3(1-11)Online publication date: 19-Sep-2023
  • (2023)Physically agnostic quasi normal mode expansion in time dispersive structures: From mechanical vibrations to nanophotonic resonancesEuropean Journal of Mechanics - A/Solids10.1016/j.euromechsol.2022.104809100(104809)Online publication date: Jul-2023
  • (2023)Acoustic modal analysis with heat release fluctuations using nonlinear eigensolversApplied Mathematics and Computation10.1016/j.amc.2023.128249458:COnline publication date: 1-Dec-2023
  • (2022)Robust Rational Approximations of Nonlinear Eigenvalue ProblemsSIAM Journal on Scientific Computing10.1137/20M138053344:4(A2439-A2463)Online publication date: 1-Jan-2022
  • (2022)Thermal buckling loads of rectangular FG plates with temperature-dependent properties using Carrera Unified FormulationComposite Structures10.1016/j.compstruct.2022.115787295(115787)Online publication date: Sep-2022

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media