[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3387168.3387184acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvispConference Proceedingsconference-collections
research-article

Automatic Compression Ratio Allocation for Pruning Convolutional Neural Networks

Published: 25 May 2020 Publication History

Abstract

Convolutional neural networks (CNNs) have demonstrated significant performance improvement in many application scenarios. However, the high computational complexity and model size have limited its application on the mobile and embedded devices. Various approaches have been proposed to compress CNNs. Filter pruning is widely considered as a promising solution, which can significantly speed up the inference and reduce memory consumption. To this end, most approaches tend to prune filters by manually allocating compression ratio, which highly relies on individual expertise and not friendly to non-professional users. In this paper, we propose an Automatic Compression Ratio Allocation (ACRA) scheme based on binary search algorithm to prune convolutional neural networks. Specifically, ACRA provides two strategies for allocating compression ratio automatically. First, uniform pruning strategy allocates the same compression ratio to each layer, which is obtained by binary search based on target FLOPs reduction of the whole networks. Second, sensitivity-based pruning strategy allocates appropriate compression ratio to each layer based on the sensitivity to accuracy. Experimental results from VGG11 and VGG-16, demonstrate that our scheme can reduce FLOPs significantly while maintaining a high accuracy level. Specifically, for the VGG16 on CIFAR-10 dataset, we reduce 29.18% FLOPs with only 1.24% accuracy decrease.

References

[1]
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014).
[2]
AlexKrizhevsky, IlyaSutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097--1105.
[3]
Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668 (2018).
[4]
Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. 2015. Convolutional neural networks with low-rank regularization. arXiv preprint arXiv: 1511.06067 (2015).
[5]
Frederick Tung and Greg Mori. 2019. Similarity-Preserving Knowledge Distillation. arXiv preprint arXiv:1907.09682 (2019).
[6]
Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).
[7]
Guobin Chen, Wongun Choi, Xiang Yu, Tony X. Han, and Manmohan Krishna Chandraker. 2017. Learning Efficient Object Detection Models with Knowledge Distillation. In NIPS.
[8]
Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).
[9]
Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016).
[10]
Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. 2015. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision. 1520--1528.
[11]
Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE international conference on computer vision. 5058--5066.
[12]
Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3431--3440.
[13]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Conference on Computer Vision and Pattern Recognition (CVPR). 770--778.
[14]
Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large Scale Image Recognition. In ICLR.
[15]
Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv: 1405.3866 (2014).
[16]
Min Wang, Baoyuan Liu, and Hassan Foroosh. 2017. Factorized convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision. 545--553.
[17]
Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. Xnor-net: Imagenet classification using binary convolutional neural networks. In European Conference on Computer Vision. Springer, 525--542.
[18]
Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2016. Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016).
[19]
Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision. 1440--1448.
[20]
Sergey Zagoruyko and Nikos Komodakis. 2016. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016).
[21]
Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and Jiebo Luo. 2018. Holistic cnn compression via low-rank decomposition with knowledge transfer. IEEE transactions on pattern analysis and machine intelligence (2018).
[22]
Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. 2018. Accelerating Convolutional Networks via Global & Dynamic Filter Pruning. In IJCAI. 2425--2432.
[23]
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems. 91--99.
[24]
Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015).
[25]
Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural network. In Advances in neural information processing systems. 1135--1143.
[26]
Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. 2015. Compressing neural networks with the hashing trick. In International Conference on Machine Learning. 2285--2294.
[27]
Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. 2018. Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866 (2018).
[28]
Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. 2019. Filter pruning via geometric median for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4340--4349.

Index Terms

  1. Automatic Compression Ratio Allocation for Pruning Convolutional Neural Networks

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICVISP 2019: Proceedings of the 3rd International Conference on Vision, Image and Signal Processing
    August 2019
    584 pages
    ISBN:9781450376259
    DOI:10.1145/3387168
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 25 May 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Computer Vision
    2. Model Compression
    3. Network Pruning
    4. Neural Networks

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • National Natural Science Foundation of China

    Conference

    ICVISP 2019

    Acceptance Rates

    ICVISP 2019 Paper Acceptance Rate 126 of 277 submissions, 45%;
    Overall Acceptance Rate 186 of 424 submissions, 44%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 84
      Total Downloads
    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media