[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/309831.309838acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free access

Solving some overdetermined polynomial systems

Published: 01 July 1999 Publication History
First page of PDF

References

[1]
BAUR, \~. AND STRASSEN, V. The complcxity of' partial deriwitives. Theo. Comp. Sci. 22 (1983), 317-330.
[2]
BONDYFALAT, D., .X~OURRAIN, B., AND PAN. V. Controlled iterative lnethods tbr solving polynomial systems. In ISSAC'98 (1998), ACM Press., pp. 252 259.
[3]
CIIISTOV. A. AND G,~IGOaIEV, D. Subexpon(mtial time. solving systems of algebrai(: equations. LOMI preprint, 1983.
[4]
DED~EU. J., AND SIIUB, M. Newton and predictorcorrector methods for overdetermined systems of eq~tations. Tech. rep., IBM Research Division, 1998.
[5]
EGNER, S. Semi-m,merical solution to 6/6-Stewart platform kinematics based m, symmetry. Applicable Algebra in Engineering, Communication and Computing 7 (1996), 449 468.
[6]
GIANNI, P. AND _-~{ORA, T. Algebraic solution of systems of polynomials equations. In AAECC-5 (1989), Springer, pp. 247(}-257.
[7]
GIUSTI, h'i., HAEGELE, K. HE.INTZ, J., h'ION'I'ANA, Z., h'IORAIS, J., AND PARDO, L. Lower bounds for (tiophantine approximations. In .lournal of Pure and App. Algebra (Proc.eedings of MEGA '96) (1997), vol. 117, pp. 277-317.
[8]
GIUST}, ~'I. AND HEIN'FZ. Z. La ddtermination des points isold.s et de la dimension d'une varidt~ alg6brique peut se fair(: en temps polynomial. In Computational Algebraic Geometry and Commutative Algebra (1993), E. D. and R. L. Eds.: vol. XXXIV of Symposia Matematica, Cambridge University Press, pp. 216--256.
[9]
GIUSTI. h'I., HEINTZ, J., h:If)R.AIS, J., h.'IOR.(,ENSTEIIN, Z., AND PARD(), L. Straight-line l)rograms in geometric elitnination theory. Journal of Pure and App. Algebra 124 (1998), 101 146.
[10]
GIUSTI, _.X,I., HEINTZ,l., 1VIORAIS, .}., AND PARDO, L. When polynomial eqlm|,ions can be. "'solved" fast: ? In Applied Alge.bra, Algebraic Al.qorithms and Error Col recting Codes, Proceedings AAECC-11 (1995): C. G., G. M. and M. T., E(ls., vol. 948 of LNCS, Springer, I)P. 205-231.
[11]
HEINTZ, J. Definability and fast quantifier elimination il, algebraically closed fieMs. Theor. Comput. Sci. 2~4, 3 (1983), 239--277.
[12]
HEINTZ,1., KRICK, T., PL'I-)I')U, S., SARIA. J., AND x~VAISSBEIN. A. Delbrmation techniques for efficient, polynomial equation s()lvir, g. Subnlitted.
[13]
HEINTZ. J., ANI) SCIINORll, C. Testing polynomials which are easy to c.ompute. In Logic and Al- .qorithmic, vol. 30 of Monograph, ie de l'ensei.qnement mathdmatiqv.e. 1980, pp. 237--254.
[14]
KRICK: T., AN'I) PAR.DO, L. A coml)utational method for diophantine approximation. In Algorithms in Algebraic Geometry and Applications (Proceedings MEGA '9~) (1996). G. V. L. and R. T., Eds., vol. 143 of Progress in Mathematics, Birk/iuser Verlag, pp. 193- 254.
[15]
KR.ONECKER, L. Grundzfige einer arithmetische~, Theorie der algebraischen Gr5ssen. Journal f~r die re.ine und andcwandte Mathematik (1882).
[16]
LAZARD: D. Stewart t)latform and GrSbner bases. In Proceedings of the third international workshop on advance.s of robot kinematics (1992), P.-C. V. and L. J., Eds., Ferrare, pp. 136-142.
[17]
MERLET.J. Parallel manitmlators- 3rd part. research rep. no. 1003. Tech. re.'p., INRIA Sophia-Antipolis, 1988.
[18]
MORALS,l. Resolucidn eficaz de sistemas de ecuaclones polinomiales. PhD thesis, University of Santander, Spain, 1998.
[19]
~'IOURRAIN: B. Enumeration problems in Ge.ometry, Robotics and \Zision. In Al!?o'rithm.s in Alge.braic Ge.ometry and Applications (1996), L. Gonzglez and T. Recio, Eds., vol. 143 of Prog. in Math., Birkhguser, Basel, pp. 285-306.
[20]
RONGA. F. AND \rlJS'l". T. Stewart I)latforms without computer '? In International Conference on Real Analytic and AIgebrnic Geometry (1995), F. Broglia, M. Galbiati, and A. Tognoli. Eds., W. de Gruyter.
[21]
R.ot:lbLIER., F. Algorithmes efficaces pour l'dtude des zdros reSels des systb~mes polynomiaux. PhD thesis, Universitd R.ennes I, 1996.
[22]
R.oulr.r.IEa. F. Solving zer~-dimensi~nal polynomial systems trough the rational univariate representation. Tcch. R.ep. 3:126, INRIA, Projet Polka, 1998.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '99: Proceedings of the 1999 international symposium on Symbolic and algebraic computation
July 1999
314 pages
ISBN:1581130732
DOI:10.1145/309831
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 1999

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

ISSAC99
Sponsor:
ISSAC99: International Symposium on Symbolic and Algebraic Computation
July 28 - 31, 1999
British Columbia, Vancouver, Canada

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)116
  • Downloads (Last 6 weeks)27
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2015)Overdetermined Weierstrass iteration and the nearest consistent systemTheoretical Computer Science10.1016/j.tcs.2014.10.008562:C(346-364)Online publication date: 11-Jan-2015
  • (2010)Strong Nœther Position and Stabilized RegularitiesCommunications in Algebra10.1080/0092787090282854638:2(515-533)Online publication date: 18-Feb-2010
  • (2010)On computing absolutely irreducible components of algebraic varieties with parametersComputing10.1007/s00607-010-0099-789:1-2(45-68)Online publication date: 1-Aug-2010
  • (2008)A concise proof of the Kronecker polynomial system solver from scratchExpositiones Mathematicae10.1016/j.exmath.2007.07.00126:2(101-139)Online publication date: May-2008
  • (2007)On probabilistic analysis of randomization in hybrid symbolic-numeric algorithmsProceedings of the 2007 international workshop on Symbolic-numeric computation10.1145/1277500.1277503(11-17)Online publication date: 25-Jul-2007
  • (2006)Complexity of the resolution of parametric systems of polynomial equations and inequationsProceedings of the 2006 international symposium on Symbolic and algebraic computation10.1145/1145768.1145810(246-253)Online publication date: 9-Jul-2006
  • (2004)Deformation techniques to solve generalised Pham systemsTheoretical Computer Science10.1016/j.tcs.2004.01.009315:2-3(593-625)Online publication date: 6-May-2004
  • (2000)Pseudofactors of multivariate polynomialsProceedings of the 2000 international symposium on Symbolic and algebraic computation10.1145/345542.345616(161-168)Online publication date: 1-Jul-2000

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media