[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2786784.2786799acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Animating articulated characters using wiggly splines

Published: 07 August 2015 Publication History

Abstract

We propose a new framework for spacetime optimization that can generate artistic motion with a long planning horizon for complex virtual characters. The scheme can be used for generating general types of motion and neither requires motion capture data nor an initial motion that satisfies the constraints. Our modeling of the spacetime optimization combines linearized dynamics and a novel warping scheme for articulated characters. We show that the optimal motions can be described using a combination of vibration modes, wiggly splines, and our warping scheme. This enables us to restrict the optimization to low-dimensional spaces of explicitly parametrized motions. Thereby the computation of an optimal motion is reduced to a low-dimensional non-linear least squares problem, which can be solved with standard solvers. We show examples of motions created by specifying only a few constraints for positions and velocities.

Supplementary Material

ZIP File (p101-schulz.zip)

References

[1]
Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990.
[2]
Barbič, J., and Zhao, Y. 2011. Real-time large-deformation substructuring. ACM Trans. Graph. 30, 4, 91:1--91:8.
[3]
Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 53:1--53:9.
[4]
Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Trans. Graph. 31, 4.
[5]
Barzel, R. 1997. Faking dynamics of ropes and springs. IEEE Comput. Graph. Appl. 17, 31--39.
[6]
Chai, J., and Hodgins, J. K. 2007. Constraint-based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26.
[7]
Choi, M. G., and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graphics 11, 1, 91--101.
[8]
Cohen, M. F. 1992. Interactive spacetime control for animation. Proc of ACM SIGGRAPH 26, 293--302.
[9]
Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 3, 417--426.
[10]
Guenter, B. 2007. Efficient symbolic differentiation for graphics applications. ACM Trans. Graph. 26.
[11]
Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 4, 72:1--72:8.
[12]
Hahn, F., Thomaszewski, B., Coros, S., Sumner, R. W., and Gross, M. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings of the Symposium on Computer Animation, 165--171.
[13]
Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Graphics Interface, 247--256.
[14]
Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2010. Eigenmodes of surface energies for shape analysis. Proceedings of Geometric Modeling and Processing, 296--314.
[15]
Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1--119:11.
[16]
Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4, 71:1--71:8.
[17]
Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7, 983--992.
[18]
Jain, S., and Liu, C. K. 2011. Modal-space control for articulated characters. ACM Trans. Graph. 30, 5.
[19]
Kass, M., and Anderson, J. 2008. Animating oscillatory motion with overlap: wiggly splines. ACM Trans. Graph. 27, 3, 28:1--28:8.
[20]
Kim, T., and James, D. L. 2011. Physics-based character skinning using multi-domain subspace deformations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '11, 63--72.
[21]
Kim, J., and Pollard, N. S. 2011. Direct control of simulated nonhuman characters. IEEE Comput. Graph. Appl. 31, 4 (July), 56--65.
[22]
Kim, J., and Pollard, N. S. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30, 5, 121:1--121:19.
[23]
Kim, M., Hyun, K., Kim, J., and Lee, J. 2009. Synchronized multi-character motion editing. ACM Trans. Graph. 28, 3 (July), 79:1--79:9.
[24]
Kry, P., Reveret, L., Faure, F., and Cani, M.-P. 2009. Modal locomotion: Animating virtual characters with natural vibrations. Computer Graphics Forum 28, 2, 289--298.
[25]
Li, S., Huang, J., Desbrun, M., and Jin, X. 2013. Interactive elastic motion editing through spacetime position constraints. Computer Animation and Virtual Worlds 24, 3-4, 409--417.
[26]
Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 4, 108:1--108:10.
[27]
Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24, 3.
[28]
McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3, 449--456.
[29]
Mordatch, I., Wang, J. M., Todorov, E., and Koltun, V. 2013. Animating human lower limbs using contact-invariant optimization. ACM Trans. Graph. 32, 6, 203:1--203:8.
[30]
Nunes, R. F., Cavalcante-Neto, J. B., Vidal, C. A., Kry, P. G., and Zordan, V. B. 2012. Using natural vibrations to guide control for locomotion. In Proc. of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 87--94.
[31]
Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. Proc. of ACM SIGGRAPH 23, 207--214.
[32]
Popović, Z., and Witkin, A. 1999. Physically based motion transformation. In Proceedings of SIGGRAPH, 11--20.
[33]
Popović, J., Seitz, S. M., and Erdmann, M. 2003. Motion sketching for control of rigid-body simulations. ACM Trans. Graph. 22, 4, 1034--1054.
[34]
Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514--521.
[35]
Schulz, C., von Tycowicz, C., Seidel, H.-P., and Hildebrandt, K. 2014. Animating deformable objects using sparse spacetime constraints. ACM Trans. Graph. 33, 4.
[36]
Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3, 716--723.
[37]
Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3.
[38]
Wisniewski, K. 2010. Finite Rotation Shells. Springer.
[39]
Witkin, A., and Kass, M. 1988. Spacetime constraints. Proc. of ACM SIGGRAPH 22, 159--168.
[40]
Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. Symp. Comp. Anim., 15--23.

Cited By

View all
  • (2024)De Casteljau's Algorithm in Geometric Data Analysis: Theory and ApplicationComputer Aided Geometric Design10.1016/j.cagd.2024.102288(102288)Online publication date: Apr-2024
  • (2016)Splines in the space of shellsProceedings of the Symposium on Geometry Processing10.5555/3061451.3061466(111-120)Online publication date: 20-Jun-2016
  • (2016)Splines in the Space of ShellsComputer Graphics Forum10.1111/cgf.1296835:5(111-120)Online publication date: 15-Aug-2016

Index Terms

  1. Animating articulated characters using wiggly splines

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCA '15: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation
    August 2015
    193 pages
    ISBN:9781450334969
    DOI:10.1145/2786784
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 August 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. optimal control
    2. physically-based animation
    3. spacetime constraints
    4. wiggly splines

    Qualifiers

    • Research-article

    Conference

    SCA '15
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 183 of 487 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)De Casteljau's Algorithm in Geometric Data Analysis: Theory and ApplicationComputer Aided Geometric Design10.1016/j.cagd.2024.102288(102288)Online publication date: Apr-2024
    • (2016)Splines in the space of shellsProceedings of the Symposium on Geometry Processing10.5555/3061451.3061466(111-120)Online publication date: 20-Jun-2016
    • (2016)Splines in the Space of ShellsComputer Graphics Forum10.1111/cgf.1296835:5(111-120)Online publication date: 15-Aug-2016

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media