[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2484239.2484244acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article

Stone age distributed computing

Published: 22 July 2013 Publication History

Abstract

A new model that depicts a network of randomized finite state machines operating in an asynchronous environment is introduced. This model, that can be viewed as a hybrid of the message passing model and cellular automata is suitable for applying the distributed computing lens to the study of networks of sub-microprocessor devices, e.g., biological cellular networks and man-made nano-networks.
Although the computation and communication capabilities of each individual device in the new model are, by design, much weaker than those of an abstract computer, we show that some of the most important and extensively studied distributed computing problems can still be solved efficiently.

References

[1]
H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. Commun. ACM, 43(5):74--82, May 2000.
[2]
Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a maximal independent set. In DISC, pages 32--50, 2011.
[3]
Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A Biological Solution to a Fundamental Distributed Computing Problem. Science, 331(6014):183--185, Jan. 2011.
[4]
I. F. Akyildiz, J. M. Jornet, and M. Pierobon. Nanonetworks: a new frontier in communications. Commun. ACM, 54(11):84--89, Nov. 2011.
[5]
N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms, 7:567--583, December 1986.
[6]
D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively mobile finite-state sensors. Distributed Computing, pages 235--253, mar 2006.
[7]
D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a leader. Distributed Computing, 21(3):183--199, sep 2008.
[8]
J. Aspnes and E. Ruppert. An introduction to population protocols. In B. Garbinato, H. Miranda, and L. Rodrigues, editors, Middleware for Network Eccentric and Mobile Applications, pages 97--120. Springer-Verlag, 2009.
[9]
B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804--823, 1985.
[10]
B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E. Saks. Adapting to asynchronous dynamic networks (extended abstract). In STOC, pages 557--570, 1992.
[11]
B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead. In FOCS, pages 514--522, 1990.
[12]
L. Barenboim and M. Elkin. Distributed (delta 1)-coloring in linear (in delta) time. In STOC, pages 111--120, 2009.
[13]
L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic time. J. ACM, 58(5):23, 2011.
[14]
L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry breaking. CoRR, abs/1202.1983, 2012.
[15]
M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps, and nonapproximability-towards tight results. SIAM J. Comput., 27(3):804--915, 1998.
[16]
Y. Benenson. Biomolecular computing systems: principles, progress and potential. Nat Rev Genet, 13(7):455--468, July 2012.
[17]
Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable and autonomous computing machine made of biomolecules. Nature, 414(6862):430--434, Nov. 2001.
[18]
D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30:323--342, April 1983.
[19]
I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population protocols. In DISC, DISC '08, pages 498--499, Berlin, Heidelberg, 2008. Springer-Verlag.
[20]
I. Chlamtac and S. Kutten. On Broadcasting in Radio Networks--Problem Analysis and Protocol Design. Communications, IEEE Transactions on {legacy, pre - 1988}, 33(12):1240--1246, 1985.
[21]
R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control, 70(1):32--53, July 1986.
[22]
A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In DISC, pages 148--162, 2010.
[23]
Y. Emek, J. Seidel, and R. Wattenhofer. Distributed computability: Anonymity, revocability, and randomization. A manuscript.
[24]
R. Flury and R. Wattenhofer. Slotted Programming for Sensor Networks. In IPSN, April 2010.
[25]
M. Gardner. The fantastic combinations of John Conway's new solitaire game "life". Scientific American, 223(4):120--123, 1970.
[26]
P. Gordon. Numerical Cognition Without Words: Evidence from Amazonia. Science, 306(5695):496--499, Oct. 2004.
[27]
A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal matching. Inf. Process. Lett., 22(2):77--80, 1986.
[28]
K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed Coloring in Õ(√log n) Bit Rounds. In IPDPS, 2006.
[29]
F. Kuhn. Weak graph colorings: distributed algorithms and applications. In SPAA, pages 138--144, New York, NY, USA, 2009. ACM.
[30]
F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In PODC, pages 300--309, 2004.
[31]
C. Lenzen and R. Wattenhofer. MIS on trees. In PODC, pages 41--48, New York, NY, USA, 2011.
[32]
N. Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21:193--201, Feb. 1992.
[33]
M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput., 15:1036--1055, November 1986.
[34]
N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1st edition, 1996.
[35]
Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari. About randomised distributed graph colouring and graph partition algorithms. Inf. Comput., 208(11):1296--1304, Nov. 2010.
[36]
Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari. An optimal bit complexity randomised distributed MIS algorithm. Distributed Computing, 23(5--6):331--340, Jan. 2011.
[37]
O. Michail, I. Chatzigiannakis, and P. G. Spirakis. New Models for Population Protocols. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2011.
[38]
K. Nakamura. Asynchronous cellular automata and their computational ability. Syst Comput Controls, 5(5):58--66, 1974.
[39]
C. L. Nehaniv. Asynchronous automata networks can emulate any synchronous automata network. Journal of Algebra, pages 1--21, Dec. 2003.
[40]
D. Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.
[41]
D. Sadava. Life: The Science of Biology. Sinauer Associates, 2011.
[42]
J. Schneider and R. Wattenhofer. An optimal maximal independent set algorithm for bounded-independence graphs. Distributed Computing, 22(5--6):349--361, 2010.
[43]
J. Schneider and R. Wattenhofer. Distributed Coloring Depending on the Chromatic Number or the Neighborhood Growth. In SIROCCO, June 2011.
[44]
J. Suomela. Survey of local algorithms. To appear in ACM Computing Surveys, 2012. http://www.cs.helsinki.fi/u/josuomel/doc/local-survey.pdf.
[45]
M. Szegedy and S. Vishwanathan. Locality based graph coloring. In STOC, pages 201--207, 1993.
[46]
L. G. Valiant. Parallel computation. In 7th IBM Symp. on Math. Foundations of Computer Science, 1982.
[47]
J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL, USA, 1966.
[48]
S. Wolfram. A new kind of science. Wolfram Media, Champaign, Illinois, 2002.

Cited By

View all
  • (2024)Brief Announcement: Self-Stabilizing MIS Computation in the Beeping ModelProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662811(87-90)Online publication date: 17-Jun-2024
  • (2024)Asynchronous Self-stabilization Made Fast, Simple, and Energy-efficientProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662803(538-548)Online publication date: 17-Jun-2024
  • (2024)Non-negotiating Distributed ComputingStructural Information and Communication Complexity10.1007/978-3-031-60603-8_12(208-225)Online publication date: 23-May-2024
  • Show More Cited By

Index Terms

  1. Stone age distributed computing

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      PODC '13: Proceedings of the 2013 ACM symposium on Principles of distributed computing
      July 2013
      422 pages
      ISBN:9781450320658
      DOI:10.1145/2484239
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 July 2013

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. cellular automata
      2. efficient algorithms
      3. finite state machines
      4. message passing

      Qualifiers

      • Research-article

      Conference

      PODC '13
      Sponsor:
      PODC '13: ACM Symposium on Principles of Distributed Computing
      July 22 - 24, 2013
      Québec, Montréal, Canada

      Acceptance Rates

      PODC '13 Paper Acceptance Rate 37 of 145 submissions, 26%;
      Overall Acceptance Rate 740 of 2,477 submissions, 30%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)30
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 11 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Brief Announcement: Self-Stabilizing MIS Computation in the Beeping ModelProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662811(87-90)Online publication date: 17-Jun-2024
      • (2024)Asynchronous Self-stabilization Made Fast, Simple, and Energy-efficientProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662803(538-548)Online publication date: 17-Jun-2024
      • (2024)Non-negotiating Distributed ComputingStructural Information and Communication Complexity10.1007/978-3-031-60603-8_12(208-225)Online publication date: 23-May-2024
      • (2024)The Hardness of Local Certification of Finite-State DynamicsLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_4(51-65)Online publication date: 6-Mar-2024
      • (2023)Distributed Self-Stabilizing MIS with Few States and Weak CommunicationProceedings of the 2023 ACM Symposium on Principles of Distributed Computing10.1145/3583668.3594581(310-320)Online publication date: 19-Jun-2023
      • (2022)A feedback control principle common to several biological and engineered systemsJournal of The Royal Society Interface10.1098/rsif.2021.071119:188Online publication date: 2-Mar-2022
      • (2022)Distributed maximal independent set computation driven by finite-state dynamicsInternational Journal of Parallel, Emergent and Distributed Systems10.1080/17445760.2022.215324838:1(85-97)Online publication date: 6-Dec-2022
      • (2022)Public communication can facilitate low-risk coordination under surveillanceScientific Reports10.1038/s41598-022-07165-912:1Online publication date: 2-Mar-2022
      • (2021)Self-stabilizing clock synchronization with 1-bit messagesProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458193(2154-2173)Online publication date: 10-Jan-2021
      • (2021)A Thin Self-Stabilizing Asynchronous Unison Algorithm with Applications to Fault Tolerant Biological NetworksProceedings of the 2021 ACM Symposium on Principles of Distributed Computing10.1145/3465084.3467922(93-102)Online publication date: 21-Jul-2021
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media