[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1889863.1889871acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

Image-based 3D telecopier: a system for sharing a 3D object by multiple groups of people at remote locations

Published: 22 November 2010 Publication History

Abstract

We propose a system that allows multiple groups of users at remote locations to naturally share a 3D image of real objects. All users can interactively observe a 3D stereoscopic image without distortion from their own viewpoints. The system basically consists of a combination of subsystems: imaging and display. The imaging subsystem generates images of the real object observed from arbitrary viewpoints based on image-based rendering technique implemented on GPU. The display system generates a 3D virtual image of the real object to be interactively observed by multiple people around the tabletop display. People at one place just put the real object on their imaging system to capture a set of its images from sparse viewpoints around it; other groups of multiple persons at remote places connected by networks observe its virtual image from arbitrary viewpoints, as if there is a copy of the real object, on their display systems. This paper describes details of the system configurations and algorithms. Then discussions are made based on experimental results.

References

[1]
M. Agrawala, A. Beers, B. Frohlich, P. Hanrahan. The two user responsive workbench: support for collaboration through individual views of a shared space. Proc. of SIGGRAPH, pp. 327--332, 1997.
[2]
O. Bimber, B. Frohlich, D. Schmalstieg, M. Encarnacao. The virtual showcase. IEEE CG&A, Vol. 21, No. 6, pp. 48--55, 2001.
[3]
C. Buehler, M. Bosse, L. McMillan, S. Gortler, M. Cohen. Unstructured lumigraph rendering. Proc. of SIGGRAPH, pp. 425--432, 2001.
[4]
S. E. Chen, L. Williams. View interpolation for image synthesis. Proc. of SIGGRAPH, pp. 279--288, 1993.
[5]
P. E. Debevec, Y. Yu, G. Borshukov. Efficient view-dependent image-based rendering with projective texture-mapping. Proc. of Eurographics Workshop on Rendering, pp. 105--116, 1998.
[6]
G. Favalora, R. Dorval, D. Hall, M. Giovinco, J. Napoli. Volumetric three-dimensional display system with rasterization hardware. Proc. of SPIE (Photonics West) #4297, pp. 227--235, 2001.
[7]
B. Frohlich, R. Blach, O. Stefani, J. Hochstrate, M. Bues, J. Hoffmann, K. Kluger, Implementing multi-viewer stereo displays, Proc. of WSCG, pp. 139--146, 2005.
[8]
M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, L. V. Gool, S. Lang, K. Strehlke, A. Moere, O. Staadt. blue-c: A spatially immersive display and 3D video portal for telepresence. Proc. of SIGGRAPH, pp. 819--827, 2003.
[9]
A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M Bolas, P. Debevec. Achieving eye contact in a one-to-many 3D video teleconferencing system. Proc. of SIGGRAPH, Article No. 64, 2009.
[10]
A. Jones, I. MacDowall, H. Yamada, M. Bolas, P. Debevec. Rendering for an interactive 360° light field display. Proc. of SIGGRAPH, Article No. 40, 2007.
[11]
Y. Kitamura, T. Konishi, S. Yamamoto, F. Kishino. Interactive stereoscopic display for three or more users. Proc. of SIGGRAPH, pp. 231--239, 2001.
[12]
Y. Kitamura, T. Nakayama, T. Nakashima, S. Yamamoto. IllusionHole with polarization filters. Proc. of VRST, pp. 244--251, 2006.
[13]
Y. Kitamura, T. Nakashima, K. Tanaka, T. Johkoh. The IllusionHole for medical applications. Proc. of IEEE Virtual Reality, pp. 231--234, 2007.
[14]
Y. Kunita, M. Ueno, K. Tanaka. Layered probability maps: basic framework and prototype system. Proc. of VRST, pp. 181--188, 2006.
[15]
M. Levoy P. Hanrahan. Light field rendering. Proc. of SIGGRAPH, pp. 31--41, 1996.
[16]
M. Li, M. Magnor, H. Seidel. Hardware-accelerated visual hull reconstruction and rendering. Proc. of Graphics Interface, pp. 65--71, 2003.
[17]
W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, L. McMillan. Image-based visual hulls. Proc. of SIGGRAPH, pp. 369--374, 2000.
[18]
W. Matusik H. Pfister. 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. Proc. of SIGGRAPH, pp. 814--824, 2004.
[19]
R. Otsuka, T. Hoshino, Y. Horry. Transpost: all-around display system for 3D solid image. Proc. of VRST, pp. 187--194, 2004.
[20]
C. Pulfrich. Die Stereoskopie im Dienste der isochromem und herterrochromen Photmetrie. Naturwissenschaft 10, pp. 553--564, 1922.
[21]
Z. Zhang, A flexible new technique for camera calibration. IEEE Trans. on PAMI, Vol. 22, No. 11, pp. 1330--1334, 2000.

Cited By

View all
  • (2015)Coupled-clay: Physical-virtual 3D collaborative interaction environment2015 IEEE Virtual Reality (VR)10.1109/VR.2015.7223392(255-256)Online publication date: Mar-2015

Index Terms

  1. Image-based 3D telecopier: a system for sharing a 3D object by multiple groups of people at remote locations

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        VRST '10: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology
        November 2010
        244 pages
        ISBN:9781450304412
        DOI:10.1145/1889863
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 22 November 2010

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. 3D interactions
        2. collaborations
        3. image-based rendering
        4. stereoscopic display
        5. telecommunications
        6. telepresence

        Qualifiers

        • Research-article

        Conference

        VRST'10

        Acceptance Rates

        Overall Acceptance Rate 66 of 254 submissions, 26%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)7
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 10 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2015)Coupled-clay: Physical-virtual 3D collaborative interaction environment2015 IEEE Virtual Reality (VR)10.1109/VR.2015.7223392(255-256)Online publication date: Mar-2015

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media