[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Sequent and hypersequent calculi for abelian and łukasiewicz logics

Published: 01 July 2005 Publication History

Abstract

We present two embeddings of Łukasiewicz logic Ł into Meyer and Slaney's Abelian logic A, the logic of lattice-ordered Abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for Ł. These include hypersequent calculi, terminating hypersequent calculi, co-NP labeled sequent calculi, and unlabeled sequent calculi.

References

[1]
Aguzzoli, S. and Ciabattoni, A. 2000. Finiteness in infinite-valued logic. J. Logic, Lang. Inform. 9, 1, 5--29.]]
[2]
Aguzzoli, S. and Gerla, B. 2002. Finite-valued reductions of infinite-valued logics. Arch. Math. Logic 41, 4, 361--399.]]
[3]
Anderson, A. R. and Belnap, N. D. 1975. Entailment. Vol. 1. Princeton University Press, Princeton, NJ.]]
[4]
Avron, A. 1987. A constructive analysis of RM. J. Symbol. Logic 52, 4, 939--951.]]
[5]
Avron, A. 1991. Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Art. Intell. 4, 3--4, 225--248.]]
[6]
Avron, A. 1996. The method of hypersequents in the proof theory of propositional non-classical logics. In Logic: From Foundations to Applications. Proceedings of the Logic Colloquium, Keele, UK, 1993, W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, Eds. Oxford University Press, New York, NY, 1--32.]]
[7]
Avron, A. and Konikowska, B. 2001. Decomposition proof systems for Gödel-Dummett logics. Studia Logica 69, 2, 197--219.]]
[8]
Baaz, M., Ciabattoni, A., and Montagna, F. 2004. Analytic calculi for monoidal t-norm based logic. Fundamenta Informaticae. 59, 4, 315--332.]]
[9]
Baaz, M. and Fermüller, C. G. 1999. Analytic calculi for projective logics. In Proceedings of TABLEAUX '99. Vol. 1617. 36--50.]]
[10]
Casari, E. 1989. Comparative logics and Abelian l-groups. In Logic Colloquium '88, C. Bonotto, R. Ferro, S. Valentini, and A. Zanardo, Eds. Elsevier, Amsterdam, The Netherlands, 161--190.]]
[11]
Chang, C. C. 1958. Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467--490.]]
[12]
Ciabattoni, A., Esteva, F., and Godo, L. 2002. T-norm based logics with n-contraction. Neural Netw. World 12, 5, 441--453.]]
[13]
Ciabattoni, A. and Metcalfe, G. 2003. Bounded Łukasiewicz logics. In Proceedings of TABLEAUX 2003, M. C. Mayer and F. Pirri, Eds. Lecture Notes in Computer Science, vol. 2796. Springer, Berlin, Germany.]]
[14]
Cignoli, R., D'Ottaviano, I. M. L., and Mundici, D. 1999. Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht, The Netherlands.]]
[15]
Cignoli, R., Esteva, F., Godo, L., and Torrens, A. 2000. Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput. 4, 2, 106--112.]]
[16]
Dunn, J. M. and Meyer, R. K. 1971. Algebraic completeness results for Dummett's LC and its extensions. Zeitsch. Math. Logik Grund. Mathemat. 17, 225--230.]]
[17]
Dyckhoff, R. 1999. A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic J. IGPL 7, 3, 319--326.]]
[18]
Esteva, F., Gispert, J., Godo, L., and Montagna, F. 2002. On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Studia Logica 71, 2, 199--226.]]
[19]
Esteva, F. and Godo, L. 2001. Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124, 271--288.]]
[20]
Galli, A., Lewin, R. A., and Sagastume, M. 2004. The logic of equilibrium and Abelian lattice ordered groups. Arch. Math. Logic 43, 2, 141--158.]]
[21]
Gottwald, S. 2000. A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock, Herts., U.K.]]
[22]
Gurevich, Y. S. and Kokorin, A. I. 1963. Universal equivalence of ordered Abelian groups (in Russian). Algebra i logika 2, 37--39.]]
[23]
Hähnle, R. 1993. Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford, U.K.]]
[24]
Hájek, P. 1998. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, The Netherlands.]]
[25]
Höhle, U. 1995. Commutative, residuated ℓ-monoids. In Non-Classical Logics and their Applications to Fuzzy Subsets, U. Höhle and E. P. Klement, Eds. Kluwer, Dordrecht, The Netherlands, 53--106.]]
[26]
Jenei, S. and Montagna, F. 2002. A proof of standard completeness for Esteva and Godo's MTL logic. Studia Logica 70, 2, 183--192.]]
[27]
Klement, E. P., Mesiar, R., and Pap, E. 2000. Triangular Norms. Trends in Logic, vol. 8. Kluwer, Dordrecht, The Netherlands.]]
[28]
Łukasiewicz, J. 1970. Jan Łukasiewicz, Selected Writings, L. Borowski, Ed. North Holland, The Netherlands.]]
[29]
Łukasiewicz, J. and Tarski, A. 1930. Untersuchungen über den Aussagenkalkül. Comptes Ren- dus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III 23. Reprinted and translated in Łukasiewicz {1970}.]]
[30]
Malinowski, G. 1993. Many-Valued Logics. Oxford Logic Guides, vol. 25. Oxford University Press, Oxford, U.K.]]
[31]
Metcalfe, G., Olivetti, N., and Gabbay, D. 2002. Analytic sequent calculi for Abelian and Łukasiewicz logics. In Proceedings of TABLEAUX 2002, U. Egly and C. G. Fermüller, Eds. Lecture Notes in Computer Science, vol. 2381. Springer, Berlin, Germany, 191--205.]]
[32]
Metcalfe, G., Olivetti, N., and Gabbay, D. 2004. Analytic proof calculi for product logics. Arch. Math. Logic 43, 7, 859--889.]]
[33]
Meyer, R. K. 1973. Intuitionism, entailment, negation. In Truth, Syntax and Modality, H. Leblanc, Ed. North Holland, Amsterdam, The Netherlands, 168--198.]]
[34]
Meyer, R. K. and Slaney, J. K. 1989. Abelian logic from A to Z. In Paraconsistent Logic: Essays on the Inconsistent, G. Priest, R. Sylvan, and J. Norman, Eds. Philosophia Verlag, Munich, Germany, 245--288.]]
[35]
Montagna, F., Pinna, G. M., and Tiezzi, E. B. P. 2003. A tableau calculus for Hájek's logic BL. J. Logic Computat. 13, 2, 241--259.]]
[36]
Mundici, D. 1987. Satisfiability in many-valued sentential logic is NP-complete. Theoret. Comput. Sci. 52, 12, 145--153.]]
[37]
Mundici, D. and Olivetti, N. 1998. Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoret. Comput. Sci. 200, 1--2, 335--366.]]
[38]
Olivetti, N. 2003. Tableaux for Łukasiewicz infinite-valued logic. Studia Logica 73, 1, 81--111.]]
[39]
Paoli, F. 2001. Logic and groups. Logic Logical Philos. 9, 109--128.]]
[40]
Pottinger, G. 1983. Uniform, cut-free formulations of T, S4 and S5 (abstract). J. Symbol. Logic 48, 3, 900.]]
[41]
Prijatelj, A. 1996. Bounded contraction and Gentzen-style formulation of Łukasiewicz logics. Studia Logica 57, 2--3, 437--456.]]
[42]
Rose, A. and Rosser, J. B. 1958. Fragments of many-valued statement calculi. Trans. Amer. Math. Soc. 87, 1--53.]]
[43]
Schrijver, A. 1987. Theory of Linear and Integer Programming. John Wiley and Sons, New York, NY.]]
[44]
Scott, D. 1974. Completeness and axiomatizability in many-valued logic. In Proceedings of Symposia in Pure Mathematics Volume XXV: Proceedings of the Tarski Symposium, L. Henkin et al., Eds. American Mathematical Society, Berkeley, CA, 411--435.]]
[45]
Urquhart, A. 1986. Many-valued logics. In Handbook of Philosophical Logic, vol. 3. D. Gabbay and F. Günthner, Eds. Reidel, Dordrecht, The Netherlands, 71--116.]]
[46]
Weispfenning, V. 1986. The complexity of the word problem for Abelian l-groups. Theoret. Comput. Sci. 48, 1, 127--132.]]

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 6, Issue 3
July 2005
191 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/1071596
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2005
Published in TOCL Volume 6, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Ł ukasiewicz logic
  2. Abelian logic
  3. Hypersequents
  4. Sequents

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)2
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Linear Abelian Modal LogicBulletin of the Section of Logic10.18778/0138-0680.2023.3053:1(1-28)Online publication date: 15-Dec-2023
  • (2023)RELEVANT CONSEQUENCE RELATIONS: AN INVITATIONThe Review of Symbolic Logic10.1017/S1755020323000205(1-31)Online publication date: 30-Jun-2023
  • (2023)On the Provable Contradictions of the Connexive Logics C and C3Journal of Philosophical Logic10.1007/s10992-023-09709-4Online publication date: 29-Jul-2023
  • (2022)ALGEBRAIC EXPANSIONS OF LOGICSThe Journal of Symbolic Logic10.1017/jsl.2022.47(1-19)Online publication date: 22-Jun-2022
  • (2022)From Truth Degree Comparison Games to Sequents-of-Relations Calculi for Gödel LogicLogica Universalis10.1007/s11787-022-00300-016:1-2(221-235)Online publication date: 7-Mar-2022
  • (2021)Theorems of Alternatives for Substructural LogicsArnon Avron on Semantics and Proof Theory of Non-Classical Logics10.1007/978-3-030-71258-7_5(91-105)Online publication date: 31-Jul-2021
  • (2020)On Scott’s semantics for many-valued logicJournal of Logic and Computation10.1093/logcom/exaa036Online publication date: 21-Jul-2020
  • (2020)ConferencesLogic Journal of the IGPL10.1093/jigpal/jzaa004Online publication date: 12-Jun-2020
  • (2020)From Truth Degree Comparison Games to Sequents-of-Relations Calculi for Gödel LogicInformation Processing and Management of Uncertainty in Knowledge-Based Systems10.1007/978-3-030-50146-4_20(257-270)Online publication date: 5-Jun-2020
  • (2019)Towards a Structural Proof Theory of Probabilistic -CalculiFoundations of Software Science and Computation Structures10.1007/978-3-030-17127-8_24(418-435)Online publication date: 8-Apr-2019
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media