[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

Query Compilation Without Regrets

Published: 30 May 2024 Publication History

Abstract

Engineering high-performance query execution engines is a challenging task. Query compilation provides excellent performance, but at the same time introduces significant system complexity, as it makes the engine hard to build, debug, and maintain. To overcome this complexity, we propose Nautilus, a framework that combines the ease of use of query interpretation and the performance of query compilation. On the one hand, Nautilus provides an interpretation-based operator interface that enables engineers to implement operators using imperative C++ code to ensure a familiar developer experience. On the other hand, Nautilus mitigates the performance drawbacks of interpretation by introducing a novel trace-based, multi-backend JIT compiler that translates operators into efficient code. As a result, Nautilus bridges the gap between compilation and interpretation and provides the best of both worlds, achieving high performance without sacrificing the productivity of engineers.

References

[1]
Sameer Agarwal, Davies Liu, and Reynold Xin. 2016. Apache Spark as a Compiler: Joining a Billion Rows per Second on a Laptop. https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html. [Online; accessed 31.5.2019].
[2]
Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL Compiler for High-Performance Delta Processing in Main-Memory Databases. PVLDB, Vol. 2, 2 (aug 2009), 1566--1569. https://doi.org/10.14778/1687553.1687592
[3]
Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD. ACM, 1383--1394. https://doi.org/10.1145/2723372.2742797
[4]
Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-Invented. In SIGMOD. ACM, 2205--2217. https://doi.org/10.1145/3514221.3526045
[5]
Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: A Transparent Dynamic Optimization System. In PLDI. ACM, 1--12. https://doi.org/10.1145/349299.349303
[6]
Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. 2022. Photon: A Fast Query Engine for Lakehouse Systems. In SIGMOD. ACM, 2326--2339. https://doi.org/10.1145/3514221.3526054
[7]
Lawrence Benson and Tilmann Rabl. 2022. Darwin: Scale-in stream processing. In CIDR. https://www.cidrdb.org/cidr2022/papers/p34-benson.pdf
[8]
Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009. Tracing the meta-level: PyPy's tracing JIT compiler. In ICOOOLPS. ACM, 18--25. https://doi.org/10.1145/1565824.1565827
[9]
Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR. 225--237. http://cidrdb.org/cidr2005/papers/P19.pdf
[10]
Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A Type-Based Multi-stage Programming Framework for Code Generation in C. In CGO. https://doi.org/10.1109/CGO51591.2021.9370333
[11]
Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2018. Generating custom code for efficient query execution on heterogeneous processors. The VLDB Journal, Vol. 27 (2018), 797--822. https://doi.org/10.1007/s00778-018-0512-y
[12]
Tom Britton, Lisa Jeng, Graham Carver, Tomer Katzenellenbogen, and Paul Cheak. 2020. Reversible Debugging Software "Quantify the time and cost saved using reversible debuggers". (11 2020).
[13]
Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Steffen Zeuch, and Volker Markl. 2024. Efficient Placement of Decomposable Aggregation Functions for Stream Processing over Large Geo-Distributed Topologies. Proceedings of the VLDB Endowment, Vol. 17, 6 (2024), 1501--1514.
[14]
Ankit Chaudhary, Steffen Zeuch, Volker Markl, and Jeyhun Karimov. 2023. Incremental Stream Query Merging. In EDBT 2023. OpenProceedings.org, 604--617. https://doi.org/10.48786/edbt.2023.51
[15]
Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Peng, and Paul Poulosky. 2016. Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming. In IPDPS. IEEE, 1789--1792. https://doi.org/10.1109/IPDPSW.2016.138
[16]
Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig, Ugur Cetintemel, and Stan Zdonik. 2015a. An Architecture for Compiling UDF-Centric Workflows. PVLDB, Vol. 8, 12 (aug 2015), 1466--1477. https://doi.org/10.14778/2824032.2824045
[17]
Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur cC etintemel, and Stanley B. Zdonik. 2015b. Tupleware: "Big" Data, Big Analytics, Small Clusters. In CIDR. http://cidrdb.org/cidr2015/Papers/CIDR15_Paper23u.pdf
[18]
Andrew Crotty, Alex Galakatos, and Tim Kraska. 2020. Getting Swole: Generating Access-Aware Code with Predicate Pullups. In IEEE ICDE. 1273--1284. https://doi.org/10.1109/ICDE48307.2020.00114
[19]
Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016. The Snowflake Elastic Data Warehouse. In ACM SIGMOD (San Francisco, California, USA) (SIGMOD '16). Association for Computing Machinery, New York, NY, USA, 215--226. https://doi.org/10.1145/2882903.2903741
[20]
Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe Bonnet, Florina M. Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber, Georgios I. Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaz Kosar, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier, Marcus Paradies, Bernhard Peischl, Gabrielle Poerwawinata, Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin, Andreas Starzacher, Benjamin Steinwender, Ilin Tolovski, Pinar Tö zü n, Wojciech Ulatowski, Yuanyuan Wang, Izajasz P. Wrosz, Ales Zamuda, Ce Zhang, and Xiaoxiang Zhu. 2022. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines. In CIDR 2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
[21]
Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler. In VMIL. ACM. https://doi.org/10.1145/2542142.2542143
[22]
Yannis Foufoulas, Alkis Simitsis, Lefteris Stamatogiannakis, and Yannis Ioannidis. 2022. YeSQL: "You Extend SQL" with Rich and Highly Performant User-Defined Functions in Relational Databases. Proc. VLDB Endow., Vol. 15, 10 (jun 2022), 2270--2283. https://doi.org/10.14778/3547305.3547328
[23]
Craig Freedman, Erik Ismert, and Per-Åke Larson. 2014. Compilation in the Microsoft SQL Server Hekaton Engine. IEEE Data Engineering Bulletin, Vol. 37 (2014), 22--30. http://sites.computer.org/debull/A14mar/p22.pdf
[24]
Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient Generation of Machine Code for Query Compilers. In DaMoN. ACM. https://doi.org/10.1145/3399666.3399925
[25]
Henning Funke and Jens Teubner. 2020. Data-parallel query processing on non-uniform data. PVLDB, Vol. 13, 6 (2020), 884--897. https://doi.org/10.14778/3380750.3380758
[26]
Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009. Trace-based just-in-time type specialization for dynamic languages. PLDI (2009), 465--478. https://doi.org/10.1145/1542476.1542528
[27]
Goetz Graefe. 1994. Volcano/spl minus/an extensible and parallel query evaluation system. TKDE (1994).
[28]
Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann, and Jana Giceva. 2023. Bringing Compiling Databases to RISC Architectures. PVLDB, Vol. 16, 6 (apr 2023), 1222--1234. https://doi.org/10.14778/3583140.3583142
[29]
Philipp M Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient Stream Processing Through Adaptive Query Compilation. In SIGMOD. ACM, 2487--2503. https://doi.org/10.1145/3318464.3389739
[30]
Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish: Efficient Execution of Polyglot Queries. Proc. VLDB Endow., Vol. 15, 2 (oct 2021), 196--210. https://doi.org/10.14778/3489496.3489501
[31]
Tim Gubner and Peter Boncz. 2021. Charting the Design Space of Query Execution Using VOILA. PVLDB, Vol. 14, 6 (feb 2021), 1067--1079. https://doi.org/10.14778/3447689.3447709
[32]
Immanuel Haffner and Jens Dittrich. 2023 a. A Simplified Architecture for Fast, Adaptive Compilation and Execution of SQL Queries. In EDBT 2023. OpenProceedings.org. https://doi.org/10.48786/edbt.2023.01
[33]
Immanuel Haffner and Jens Dittrich. 2023 b. A Simplified Architecture for Fast, Adaptive Compilation and Execution of SQL Queries. In Proceedings of the 26th International Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28 - March 31, 2023. OpenProceedings.org.
[34]
IBM. 2020. Avoid UDFs as join predicates. https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.2.0/com.ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_udf-join-guideline.html.
[35]
Anand Jayarajan, Wei Zhao, Yudi Sun, and Gennady Pekhimenko. 2023. TiLT: A Time-Centric Approach for Stream Query Optimization and Parallelization. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). ACM, New York, NY, USA, 818--832. https://doi.org/10.1145/3575693.3575704
[36]
Michael Jungmair and Jana Giceva. 2023. Declarative Sub-Operators for Universal Data Processing. Proc. VLDB Endow., Vol. 16, 11 (aug 2023), 3461--3474. https://doi.org/10.14778/3611479.3611539
[37]
Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open Framework for Query Optimization and Compilation. PVLDB, Vol. 15, 11 (jul 2022), 2389--2401. https://doi.org/10.14778/3551793.3551801
[38]
Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and Peter A. Boncz. 2018. Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB (2018). https://doi.org/10.14778/3275366.3275370
[39]
Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying Start: Fast Compilation and Fast Execution of Relational Queries in Umbra. VLDB J. (2021). https://doi.org/10.1007/s00778-020-00643--4
[40]
Timo Kersten and Thomas Neumann. 2020. On another level: how to debug compiling query engines. In Proceedings of the workshop on Testing Database Systems. 1--6.
[41]
Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building efficient query engines in a high-level language. In PVLDB, Vol. 7. VLDB Endowment, 853--864. https://doi.org/10.14778/2732951.2732959
[42]
Petr Kobalicek. 2023. AsmJit: Low-Latency Machine Code Generation. https://asmjit.com/. [Online; accessed 22.6.2023].
[43]
André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of compiled queries. In ICDE. IEEE, 197--208.
[44]
André Kohn, Viktor Leis, and Thomas Neumann. 2021. Building Advanced SQL Analytics From Low-Level Plan Operators. In SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20--25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1001--1013. https://doi.org/10.1145/3448016.3457288
[45]
Hugo Kornelis. 2012. T-SQL User-Defined Functions: the good, the bad, and the ugly. https://sqlserverfast.com/blog/hugo/2012/05/t-sql-user-defined-functions-the-good-the-bad-and-the-ugly-part-1/
[46]
Konstantinos Krikellas, Stratis D Viglas, and Marcelo Cintra. 2010. Generating code for holistic query evaluation. In ICDE. 613--624.
[47]
Andreas Kunft, Lukas Stadler, Daniele Bonetta, Cosmin Basca, Jens Meiners, Sebastian Breß, Tilmann Rabl, Juan José Fumero, and Volker Markl. 2018. ScootR: Scaling R Dataframes on Dataflow Systems. In SoCC. ACM.
[48]
Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. In CGO. IEEE. https://doi.org/10.1109/cgo51591.2021.9370308
[49]
Vladimir Makarov. 2020. MIR: A lightweight JIT compiler project. https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project. [Online; accessed 22.6.2023].
[50]
Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed Operator Fusion for In-memory Databases: Making Compilation, Vectorization, and Prefetching Work Together at Last. In PVLDB, Vol. 11. VLDB Endowment, 1--13. https://doi.org/10.14778/3151113.3151114
[51]
Prashanth Menon, Amadou Ngom, Lin Ma, Todd C. Mowry, and Andrew Pavlo. 2020. Permutable Compiled Queries: Dynamically Adapting Compiled Queries without Recompiling. PVLDB (2020). https://doi.org/10.14778/3425879.3425882
[52]
Adrian Michalke, Philipp M. Grulich, Clemens Lutz, Steffen Zeuch, and Volker Markl. 2021. An energy-efficient stream join for the Internet of Things. In DaMoN. 1--6. https://doi.org/10.1145/3465998.3466005
[53]
Josh Mintz. 2017. In this iteration of Database Deep Dives, we had the pleasure of catching up with Professor Andy Pavlo. https://www.ibm.com/cloud/blog/database-deep-dives-with-andy-pavlo
[54]
Ingo Müller and otehrs. 2020. The Collection Virtual Machine: An Abstraction for Multi-Frontend Multi-Backend Data Analysis. In DaMoN. https://doi.org/10.1145/3399666.3399911
[55]
Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. In PVLDB, Vol. 4. VLDB Endowment, 539--550.
[56]
Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System with In-Memory Performance. In CIDR. http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
[57]
Thomas Neumann and Guido Moerkotte. 2009. Generating optimal DAG-structured query evaluation plans. Computer Science-Research and Development (2009). https://doi.org/10.1007/s00450-009-0061-0
[58]
Oracle. 2020a. Graal Python. https://github.com/graalvm/graalpython.
[59]
Oracle. 2020b. GraalJS. https://github.com/graalvm/graaljs.
[60]
Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating End-to-End Optimization for Data Analytics Applications in Weld. PVLDB, Vol. 11, 9 (2018), 1002--1015. https://doi.org/10.14778/3213880.3213890
[61]
Shoumik Palkar, James Thomas, Anil Shanbhag, Deepak Narayanan, Holger Pirk, Malte Schwarzkopf, Saman P. Amarasinghe, and Matei Zaharia. 2017. Weld: A common runtime for high performance data analytics. In CIDR. http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
[62]
Paroski Paroski. 2016. Code generation: The inner sanctum of database performance. http://highscalability. com/blog/2016/9/7/code-generation-the-inner-sanctum-ofdatabase-performance. html. [Online; accessed 31.5.2019].
[63]
Mosha Pasumansky and Benjamin Wagner. 2022. Assembling a Query Engine From Spare Parts. In CDMS. https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper1_MoshaPasumansky.pdf
[64]
Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta's Unified Execution Engine. PVLDB, Vol. 15, 12 (2022), 3372--3384. https://doi.org/10.14778/3554821.3554829
[65]
Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - a Vector Algebra for Portable Database Performance on Modern Hardware. In PVLDB, Vol. 9. VLDB Endowment, 1707--1718. https://doi.org/10.14778/3007328.3007336
[66]
Vignesh Prajapati. 2013. Big data analytics with R and Hadoop. Packt Publishing Ltd.
[67]
Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an embeddable analytical database. In SIGMOD. ACM, 1981--1984. https://doi.org/10.1145/3299869.3320212
[68]
Jun Rao, Hamid Pirahesh, C Mohan, and Guy Lohman. 2006. Compiled query execution engine using JVM. In ICDE. IEEE. https://doi.org/10.1109/ICDE.2006.40
[69]
Nils Schubert, Philipp M. Grulich, Steffen Zeuch, and Volker Markl. 2023. Exploiting Access Pattern Characteristics for Join Reordering. In DaMoN 2023. https://doi.org/10.1145/3592980.3595304
[70]
Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and Christoph Koch. 2016. How to architect a query compiler. In SIGMOD. https://doi.org/10.1145/2882903.2915244
[71]
Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently Integrating Custom Algorithms into Modern Databases. PVLDB, Vol. 15, 5 (2022), 1119--1131.
[72]
Leonhard Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska. 2021. Tuplex: Data Science in Python at Native Code Speed. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event, China) (SIGMOD '21). Association for Computing Machinery, New York, NY, USA, 1718--1731. https://doi.org/10.1145/3448016.3457244
[73]
Ruby Y. Tahboub and Tiark Rompf. 2020. Architecting a Query Compiler for Spatial Workloads. In SIGMOD. ACM, 2103--2118. https://doi.org/10.1145/3318464.3389701
[74]
Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015. General incremental sliding-window aggregation. In PVLDB, Vol. 8. VLDB Endowment, 702--713. https://doi.org/10.14778/2752939.2752940
[75]
Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk. 2020. LightSaber: Efficient Window Aggregation on Multi-Core Processors. In SIGMOD. ACM, 2505--2521. https://doi.org/10.1145/3318464.3389753
[76]
Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark-a benchmark for queries over data streams. Technical Report. Technical Report. Technical report, OGI School of Science & Engineering at ?. https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf
[77]
Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael J. Franklin, Ion Stoica, and Matei Zaharia. 2016. SparkR: Scaling R Programs with Spark. In SIGMOD. ACM, 1099--1104. https://doi.org/10.1145/2882903.2903740
[78]
Thaddeus Vincenty. 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, Vol. 23, 176 (1975), 88--93. https://doi.org/10.1179/sre.1975.23.176.88
[79]
Benjamin Wagner, Andre Kohn, Peter Boncz, and Viktor Leis. 2024. Incremental Fusion: Unifying Compiled and Vectorized Query Execution. In ICDE.
[80]
Skye Wanderman-Milne and Nong Li. 2014. Runtime Code Generation in Cloudera Impala. IEEE Data Engineering Bulletin (2014). http://sites.computer.org/debull/A14mar/p31.pdf
[81]
Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing Runtime System. In SPLASH. ACM. https://doi.org/10.1145/2384716.2384723
[82]
Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub, and Volker Markl. 2020a. The NebulaStream Platform for Data and Application Management in the Internet of Things. In CIDR. http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
[83]
Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis, Ankit Chaudhary, Bonaventura Del Monte, Dimitrios Giouroukis, Philipp M Grulich, Ariane Ziehn, and Volker Mark. 2020b. Nebulastream: Complex analytics beyond the cloud. Open Journal of Internet Of Things (OJIOT), Vol. 6, 1 (2020), 66--81. https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html

Cited By

View all
  • (2024)Using and Enhancing NebulaStream - A TutorialProceedings of the 18th ACM International Conference on Distributed and Event-based Systems10.1145/3629104.3674126(212-216)Online publication date: 24-Jun-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Management of Data
Proceedings of the ACM on Management of Data  Volume 2, Issue 3
SIGMOD
June 2024
1953 pages
EISSN:2836-6573
DOI:10.1145/3670010
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 May 2024
Published in PACMMOD Volume 2, Issue 3

Permissions

Request permissions for this article.

Author Tags

  1. database engines
  2. query compilation
  3. query execution

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)953
  • Downloads (Last 6 weeks)141
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Using and Enhancing NebulaStream - A TutorialProceedings of the 18th ACM International Conference on Distributed and Event-based Systems10.1145/3629104.3674126(212-216)Online publication date: 24-Jun-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media