[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Knowledge Graphs Querying

Published: 11 August 2023 Publication History

Abstract

Knowledge graphs (KGs) such as DBpedia, Freebase, YAGO, Wikidata, and NELL were constructed to store large-scale, real-world facts as (subject, predicate, object) triples - that can also be modeled as a graph, where a node (a subject or an object) represents an entity with attributes, and a directed edge (a predicate) is a relationship between two entities. Querying KGs is critical in web search, question answering (QA), semantic search, personal assistants, fact checking, and recommendation. While significant progress has been made on KG construction and curation, thanks to deep learning recently we have seen a surge of research on KG querying and QA. The objectives of our survey are two-fold. First, research on KG querying has been conducted by several communities, such as databases, data mining, semantic web, machine learning, information retrieval, and natural language processing (NLP), with different focus and terminologies; and also in diverse topics ranging from graph databases, query languages, join algorithms, graph patterns matching, to more sophisticated KG embedding and natural language questions (NLQs). We aim at uniting different interdisciplinary topics and concepts that have been developed for KG querying. Second, many recent advances on KG and query embedding, multimodal KG, and KG-QA come from deep learning, IR, NLP, and computer vision domains. We identify important challenges of KG querying that received less attention by graph databases, and by the DB community in general, e.g., incomplete KG, semantic matching, multimodal data, and NLQs. We conclude by discussing interesting opportunities for the data management community, for instance, KG as a unified data model and vector-based query processing.

References

[1]
D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach. Sw-store: a vertically partitioned DBMS for semantic web data management. VLDB J., 18(2):385--406, 2009.
[2]
I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis. A survey and experimental comparison of distributed SPARQL engines for very large RDF data. PVLDB, 10(13):2049--2060, 2017.
[3]
B. Abu-Salih. Domain-specific knowledge graphs: a survey. J. Netw. Comput. Appl., 185:103076, 2021.
[4]
A. Abujabal, R. S. Roy, M. Yahya, and G. Weikum. Never-ending learning for open-domain question answering over knowledge bases. In WWW, 2018.
[5]
M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, M. Galkin, S. Sharifzadeh, A. Fischer, V. Tresp, and J. Lehmann. Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell., 44(12):8825--8845, 2022.
[6]
W. Ali, M. Saleem, B. Yao, A. Hogan, and A. N. Ngomo. A survey of RDF stores & SPARQL engines for querying knowledge graphs. VLDB J., 31(3):1--26, 2022.
[7]
R. Angles, M. Arenas, P. Barceló, P. A. Boncz, G. H. L. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. F. Sequeda, O. van Rest, and H. Voigt. G-CORE: a core for future graph query languages. In SIGMOD, 2018.
[8]
R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. Foundations of modern query languages for graph databases. ACM Comput. Surv., 50(5):68:1--68:40, 2017.
[9]
E. Arakelyan, D. Daza, P. Minervini, and M. Cochez. Complex query answering with neural link predictors. In ICLR, 2021.
[10]
A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. CoRR, abs/1711.03860, 2017.
[11]
I. Balazevic, C. Allen, and T. M. Hospedales. Tucker: tensor factorization for knowledge graph completion. In EMNLP-IJCNLP, 2019.
[12]
K. Balog and T. Kenter. Personal knowledge graphs: a research agenda. In SIGIR, 2019.
[13]
L. Bellomarini, E. Sallinger, and G. Gottlob. The vadalog system: datalog-based reasoning for knowledge graphs. PVLDB, 11(9):975--987, 2018.
[14]
J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer pairs. In EMNLP, 2013.
[15]
M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels, G. Alonso, and T. Hoefler. Demystifying graph databases: analysis and taxonomy of data organization, system designs, and graph queries. CoRR, 2019.
[16]
S. S. Bhowmick and B. Choi. Data-driven visual query interfaces for graphs: past, present, and (near) future. In SIGMOD, 2022.
[17]
S. S. Bhowmick, B. Choi, and C. Li. Graph querying meets HCI: state of the art and future directions. In SIGMOD, 2017.
[18]
K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for structuring human knowledge. In SIGMOD, 2008.
[19]
A. Bonifati, R. Ciucanu, and A. Lemay. Learning path queries on graph databases. In EDBT, 2015.
[20]
A. Bonifati, G. H. L. Fletcher, H. Voigt, and N. Yakovets. Querying graphs. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2018.
[21]
A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL query logs. VLDB J., 29(2--3):655--679, 2020.
[22]
A. Bordes, N. Usunier, S. Chopra, and J. Weston. Large-scale simple question answering with memory networks. CoRR, abs/1506.02075, 2015.
[23]
A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. In NeurIPS, 2013.
[24]
S. Borgwardt, "I. "I. Ceylan, and T. Lukasiewicz. Recent advances in querying probabilistic knowledge bases. In IJCAI, 2018.
[25]
S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and H. Kheddouci. A survey on distributed graph pattern matching in massive graphs. ACM Comput. Surv., 54(2):36:1--36:35, 2022.
[26]
J. Cai, Z. Zhang, F. Wu, and J. Wang. Deep cognitive reasoning network for multi-hop question answering over knowledge graphs. In ACL/IJCNLP, 2021.
[27]
D. V. Camarda, S. Mazzini, and A. Antonuccio. Lodlive, exploring the web of data. In Semantic Systems, 2012.
[28]
N. Chakraborty, D. Lukovnikov, G. Maheshwari, P. Trivedi, J. Lehmann, and A. Fischer. Introduction to neural network-based question answering over knowledge graphs. WIREs Data Mining Knowl. Discov., 11(3), 2021.
[29]
M. Chen, Y. Tian, K. Chang, S. Skiena, and C. Zaniolo. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In IJCAI, 2018.
[30]
X. Chen, Z. Hu, and Y. Sun. Fuzzy logic based logical query answering on knowledge graphs. In AAAI, 2022.
[31]
E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient sql-based RDF querying scheme. In VLDB, 2005.
[32]
P. Christmann, R. S. Roy, A. Abujabal, J. Singh, and G. Weikum. Look before you hop: conversational question answering over knowledge graphs using judicious context expansion. In CIKM, 2019.
[33]
F. Darari, R. E. Prasojo, and W. Nutt. CORNER: a completeness reasoner for SPARQL queries over RDF data sources. In The Semantic Web: ESWC Satellite Events, 2014.
[34]
T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2d knowledge graph embeddings. In AAAI, 2018.
[35]
A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker, V. Marsault, W. Martens, J. Michels, F. Murlak, S. Plantikow, P. Selmer, O. van Rest, H. Voigt, D. Vrgoc, M. Wu, and F. Zemke. Graph pattern matching in GQL and SQL/PGQ. In SIGMOD, 2022.
[36]
A. Deutsch, Y. Xu, and M. Wu. Seamless syntactic and semantic integration of query primitives over relational and graph data in gsql, 2018.
[37]
A. Deutsch, Y. Xu, M. Wu, and V. E. Lee. Tigergraph: a native MPP graph database. CoRR, abs/1901.08248, 2019.
[38]
B. Ding, Q. Wang, B. Wang, and L. Guo. Improving knowledge graph embedding using simple constraints. In ACL, 2018.
[39]
Y. Ding, J. Yu, B. Liu, Y. Hu, M. Cui, and Q. Wu. Mukea: multimodal knowledge extraction and accumulation for knowledge-based visual question answering. In CVPR, 2022.
[40]
H. Du, Z. Le, H. Wang, Y. Chen, and J. Yu. COKG-QA: multi-hop question answering over COVID-19 knowledge graphs. Data Intell., 4(3):471--492, 2022.
[41]
K. Elbedweihy, S. N. Wrigley, and F. Ciravegna. Evaluating semantic search query approaches with expert and casual users. In ISWC, 2012.
[42]
W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular expressions to graph reachability and pattern queries. In ICDE, 2011.
[43]
W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism revisited for graph matching. PVLDB, 3(1):1161--1172, 2010.
[44]
W. Fan, X. Wang, and Y. Wu. Answering graph pattern queries using views. In ICDE, 2014.
[45]
Q. Fang, X. Zhang, J. Hu, X. Wu, and C. Xu. Contrastive multi-modal knowledge graph representation learning. IEEE Trans. Knowl. Data Eng., 2022.
[46]
N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: an evolving query language for property graphs. In SIGMOD, 2018.
[47]
M. Galkin, Z. Zhu, H. Ren, and J. Tang. Inductive logical query answering in knowledge graphs. In NeurIPS, 2022.
[48]
M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, 1979.
[49]
G. A. Gesese, R. Biswas, M. Alam, and H. Sack. A survey on knowledge graph embeddings with literals: Which model links better literal-ly? Semantic Web, 12(4):617--647, 2021.
[50]
Y. Guo, Z. Pan, and J. Heflin. Lubm: a benchmark for owl knowledge base systems. J. Web Semant., 3(2--3):158--182, 2005.
[51]
W. L. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Embedding logical queries on knowledge graphs. In NeurIPS, 2018.
[52]
L. Han, T. Finin, and A. Joshi. Gorelations: an intuitive query system for dbpedia. In JIST, 2011.
[53]
W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. iGraph: a framework for comparisons of disk-based graph indexing techniques. PVLDB, 3(1--2):449--459, 2010.
[54]
Z. Hu, Y. Xu, W. Yu, S. Wang, Z. Yang, C. Zhu, K. Chang, and Y. Sun. Empowering language models with knowledge graph reasoning for open-domain question answering. In EMNLP, 2022.
[55]
X. Huang, J. Zhang, D. Li, and P. Li. Knowledge graph embedding based question answering. In WSDM, 2019.
[56]
Z. Huang, M. Chiang, and W. Lee. Line: logical query reasoning over hierarchical knowledge graphs. In KDD, 2022.
[57]
D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Optimizing aggregate SPARQL queries using materialized RDF views. In ISWC, 2016.
[58]
F. Ilievski, P. A. Szekely, and B. Zhang. CSKG: the commonsense knowledge graph. In ESWC, 2021.
[59]
M. S. Islam, C. Liu, and J. Li. Efficient answering of why-not questions in similar graph matching. IEEE Trans. Knowl. Data Eng., 27(10):2672--2686, 2015.
[60]
N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge graphs by example entity tuples. IEEE Trans. Knowl. Data Eng., 27(10):2797--2811, 2015.
[61]
G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph embedding via dynamic mapping matrix. In ACL, 2015.
[62]
X. Jin, Z. Yang, X. Lin, S. Yang, L. Qin, and Y. Peng. FAST: fpga-based subgraph matching on massive graphs. In ICDE, 2021.
[63]
J. Kalo, L. Fichtel, P. Ehler, and W. Balke. Knowlybert - hybrid query answering over language models and knowledge graphs. In ISWC, 2020.
[64]
Z. Kaoudi and I. Manolescu. RDF in the clouds: a survey. VLDB J., 24(1):67--91, 2015.
[65]
F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scalability of indexed subgraph query processing methods. Proc. VLDB Endow., 8(12):1566--1577, 2015.
[66]
V. Kepuska and G. Bohouta. Next-generation of virtual personal assistants (microsoft cortana, apple siri, amazon alexa and google home). In CCWC, 2018.
[67]
A. Khan and S. Elnikety. Systems for big-graphs. Proc. VLDB Endow., 7(13):1709--1710, 2014.
[68]
A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao. Neighborhood based fast graph search in large networks. In SIGMOD, 2011.
[69]
A. Khan, G. Segovia, and D. Kossmann. On smart query routing: for distributed graph querying with decoupled storage. In USENIX ATC, 2018.
[70]
A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: fast graph search with label similarity. PVLDB, 6(3):181--192, 2013.
[71]
A. Khan, Y. Ye, and L. Chen. On uncertain graphs. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2018.
[72]
J. Lee, W. Han, R. Kasperovics, and J. Lee. An in-depth comparison of subgraph isomorphism algorithms in graph databases. Proc. VLDB Endow., 6(2):133--144, 2012.
[73]
J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. v. Kleef, S. Auer, and C. Bizer. Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167--195, 2015.
[74]
A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich. Pytorch-biggraph: a large scale graph embedding system. In MLSys, 2019.
[75]
Y. Li, T. Ge, and C. X. Chen. Online indices for predictive top-k entity and aggregate queries on knowledge graphs. In ICDE, 2020.
[76]
M. Lissandrini, M. Brugnara, and Y. Velegrakis. Beyond macrobenchmarks: microbenchmark-based graph database evaluation. PVLDB, 12(4):390--403, 2018.
[77]
M. Lissandrini, D. Mottin, T. Palpanas, and Y. Velegrakis. Graph-query suggestions for knowledge graph exploration. In WWW, 2020.
[78]
L. Liu, B. Du, H. Ji, C. Zhai, and H. Tong. Neural-answering logical queries on knowledge graphs. In KDD, 2021.
[79]
L. Liu, B. Du, J. Xu, Y. Xia, and H. Tong. Joint knowledge graph completion and question answering. In KDD, 2022.
[80]
W. Liu, P. Zhou, Z. Zhao, Z. Wang, Q. Ju, H. Deng, and P. Wang. K-BERT: enabling language representation with knowledge graph. In AAAI, 2020.
[81]
X. Liu, S. Zhao, K. Su, Y. Cen, J. Qiu, M. Zhang, W. Wu, Y. Dong, and J. Tang. Mask and reason: pre-training knowledge graph transformers for complex logical queries. In KDD, 2022.
[82]
X. Long, L. Zhuang, L. Aodi, S. Wang, and H. Li. Neural-based mixture probabilistic query embedding for answering FOL queries on knowledge graphs. In EMNLP, 2022.
[83]
H. Ma, M. A. Langouri, Y. Wu, F. Chiang, and J. Pi. Ontology-based entity matching in attributed graphs. PVLDB, 12(10):1195--1207, 2019.
[84]
S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: capturing topology in graph pattern matching. ACM Trans. Database Syst., 39(1):4:1--4:46, 2014.
[85]
A. Mhedhbi and S. Salihoglu. Modern techniques for querying graph-structured relations: foundations, system implementations, and open challenges. PVLDB, 15(12):3762--3765, 2022.
[86]
Microsoft. Sql graph architecture. https://learn.microsoft.com/en-us/sql/ relational-databases/graphs/ sql-graph-architecture?view=sql-server-ver16, 2022.
[87]
T. M. Mitchell, W. W. Cohen, E. R. H. Jr., P. P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A. Platanios, A. Ritter, M. Samadi, B. Settles, R. C. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-ending learning. Commun. ACM, 61(5):103--115, 2018.
[88]
J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and
[89]
D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Exemplar queries: give me an example of what you need. PVLDB, 7(5):365--376, 2014.
[90]
D. Nathani, J. Chauhan, C. Sharma, and M. Kaul. Learning attention-based embeddings for relation prediction in knowledge graphs. In ACL, 2019.
[91]
R. Navigli and S. P. Ponzetto. Babelnet: building a very large multilingual semantic network. In ACL, 2010.
[92]
Neo4J. Why graph databases? https://neo4j.com/why-graph-databases/, 2016.
[93]
T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs. In SIGMOD, 2009.
[94]
T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data. VLDB J., 19(1):91--113, 2010.
[95]
H. Q. Ngo. Worst-case optimal join algorithms: techniques, results, and open problems. In PODS, 2018.
[96]
D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Q. Phung. A novel embedding model for knowledge base completion based on convolutional neural network. In NAACL-HLT, 2018.
[97]
J. Ni, V. Pandelea, T. Young, H. Zhou, and E. Cambria. Hitkg: towards goal-oriented conversations via multi-hierarchy learning. In AAAI, 2022.
[98]
M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective learning on multi-relational data. In ICML, 2011.
[99]
M. Nickel, V. Tresp, and H. Kriegel. Factorizing YAGO: scalable machine learning for linked data. In WWW, 2012.
[100]
C. Nikolaou and M. Koubarakis. Querying incomplete information in RDF with SPARQL. Artif. Intell., 237:138--171, 2016.
[101]
N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-scale knowledge graphs: lessons and challenges. Commun. ACM, 62(8):36--43, 2019.
[102]
Oracle. Pgql 1.5 specification. https://pgql-lang.org/spec/1.5/, 2022.
[103]
A. Pacaci and M. T. Özsu. Experimental analysis of streaming algorithms for graph partitioning. In SIGMOD, 2019.
[104]
X. Pan, T. Ye, D. Han, S. Song, and G. Huang. Contrastive language-image pre-training with knowledge graphs. In NeurIPS, 2022.
[105]
N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris. Graph-aware, workload-adaptive SPARQL query caching. In SIGMOD, 2015.
[106]
S. Pei, L. Yu, G. Yu, and X. Zhang. Rea: robust cross-lingual entity alignment between knowledge graphs. In KDD, 2020.
[107]
P. Peng, Q. Ge, L. Zou, M. T. Özsu, Z. Xu, and D. Zhao. Optimizing multi-query evaluation in federated RDF systems. IEEE Trans. Knowl. Data Eng., 33(4):1692--1707, 2021.
[108]
P. Pezeshkpour, L. Chen, and S. Singh. Embedding multimodal relational data for knowledge base completion. In EMNLP, 2018.
[109]
D. L. Phuoc, H. N. M. Quoc, Q. H. Ngo, T. T. Nhat, and M. Hauswirth. The graph of things: a step towards the live knowledge graph of connected things. J. Web Semant., 37--38:25--35, 2016.
[110]
A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati. Linking data to ontologies. J. Data Semant., 10:133--173, 2008.
[111]
A. Quamar, V. Efthymiou, C. Lei, and F. Özcan. Natural language interfaces to data. Found. Trends Databases, 11(4):319--414, 2022.
[112]
E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB J., 10(4):334--350, 2001.
[113]
H. Ren, H. Dai, B. Dai, X. Chen, M. Yasunaga, H. Sun, D. Schuurmans, J. Leskovec, and D. Zhou. LEGO: latent execution-guided reasoning for multi-hop question answering on knowledge graphs. In ICML, 2021.
[114]
H. Ren, H. Dai, B. Dai, X. Chen, D. Zhou, J. Leskovec, and D. Schuurmans. SMORE: knowledge graph completion and multi-hop reasoning in massive knowledge graphs. In KDD, 2022.
[115]
H. Ren, W. Hu, and J. Leskovec. Query2box: reasoning over knowledge graphs in vector space using box embeddings. In ICLR, 2020.
[116]
H. Ren and J. Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge graphs. In NeurIPS, 2020.
[117]
X. Ren and J. Wang. Multi-query optimization for subgraph isomorphism search. PVLDB, 10(3):121--132, 2016.
[118]
M. A. Rodriguez. The gremlin graph traversal machine and language (invited talk). In DBPL, 2015.
[119]
R. S. Roy and A. Anand. Question answering over curated and open web sources. In SIGIR, 2020.
[120]
T. Sagi, M. Lissandrini, T. B. Pedersen, and K. Hose. A design space for RDF data representations. VLDB J., 31(2):347--373, 2022.
[121]
S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity of large graphs and surprising challenges of graph processing: extended survey. VLDB J., 29(2--3):595--618, 2020.
[122]
S. Sakr, S. Elnikety, and Y. He. G-SPARQL: a hybrid engine for querying large attributed graphs. In CIKM, 2012.
[123]
M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel. Horton+: a distributed system for processing declarative reachability queries over partitioned graphs. PVLDB, 6(14):1918--1929, 2013.
[124]
A. Saxena, A. Kochsiek, and R. Gemulla. Sequence-to-sequence knowledge graph completion and question answering. In ACL, 2022.
[125]
A. Saxena, A. Tripathi, and P. P. Talukdar. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In ACL, 2020.
[126]
M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.
[127]
M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench: a sparql performance benchmark. In ICDE, 2009.
[128]
C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu. A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng., 29(1):17--37, 2017.
[129]
A. Singhal. Introducing the knowledge graph: things, not strings. https://blog.google/products/search/ introducing-knowledge-graph-things-not/, 2012.
[130]
C. Sommer. Shortest-path queries in static networks. ACM Comput. Surv., 46(4):45:1--45:31, 2014.
[131]
Q. Song, M. H. Namaki, P. Lin, and Y. Wu. Answering why-questions for subgraph queries. IEEE Trans. Knowl. Data Eng., 34(10):4636--4649, 2022.
[132]
R. Speer and C. Havasi. Representing general relational knowledge in ConceptNet 5. In LREC, 2012.
[133]
A. Styperek, M. Ciesielczyk, A. Szwabe, and P. Misiorek. Evaluation of sparql-compliant semantic search user interfaces. Vietnam. J. Comput. Sci., 2(3):191--199, 2015.
[134]
Y. Su, S. Yang, H. Sun, M. Srivatsa, S. Kase, M. Vanni, and X. Yan. Exploiting relevance feedback in knowledge graph search. In KDD, 2015.
[135]
F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, 2007.
[136]
H. Sun, A. O. Arnold, T. Bedrax-Weiss, F. Pereira, and W. W. Cohen. Faithful embeddings for knowledge base queries. In NeurIPS, 2020.
[137]
R. Sun, X. Cao, Y. Zhao, J. Wan, K. Zhou, F. Zhang, Z. Wang, and K. Zheng. Multi-modal knowledge graphs for recommender systems. In CIKM, 2020.
[138]
S. Sun and Q. Luo. In-memory subgraph matching: an in-depth study. In SIGMOD, page 1083--1098, 2020.
[139]
W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. T. Xie. Sqlgraph: an efficient relational-based property graph store. In SIGMOD, 2015.
[140]
Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: knowledge graph embedding by relational rotation in complex space. In ICLR, 2019.
[141]
G. Szárnyas, A. Prat-Pérez, A. Averbuch, J. Marton, M. Paradies, M. Kaufmann, O. Erling, P. A. Boncz, V. Haprian, and J. B. Antal. An early look at the LDBC social network benchmark's business intelligence workload. In GRADES and NDA, 2018.
[142]
A. Talmor and J. Berant. The web as a knowledge-base for answering complex questions. In NAACL-HLT, 2018.
[143]
A. Tchechmedjiev, P. Fafalios, K. Boland, M. Gasquet, M. Zloch, B. Zapilko, S. Dietze, and K. Todorov. Claimskg: a knowledge graph of fact-checked claims. In ISWC, 2019.
[144]
A. Termehchy, M. Winslett, Y. Chodpathumwan, and A. Gibbons. Design independent query interfaces. IEEE Trans. Knowl. Data Eng., 24(10):1819--1832, 2012.
[145]
Y. Tian. The world of graph databases from an industry perspective. SIGMOD Rec., 51(4):60--67, 2022.
[146]
P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann. Lc-quad: a corpus for complex question answering over knowledge graphs. In ISWC, 2017.
[147]
Y. Tuan, Y. Chen, and H. Lee. Dykgchat: benchmarking dialogue generation grounding on dynamic knowledge graphs. In EMNLP-IJCNLP, 2019.
[148]
Y. Tzitzikas, N. Manolis, and P. Papadakos. Faceted exploration of RDF/S datasets: a survey. J. Intell. Inf. Syst., 48(2):329--364, 2017.
[149]
S. Vashishth, S. Sanyal, V. Nitin, and P. P. Talukdar. Composition-based multi-relational graph convolutional networks. In ICLR, 2020.
[150]
E. Vasilyeva, M. Thiele, C. Bornhövd, and W. Lehner. Answering "why empty?" and "why so many?" queries in graph databases. J. Comput. Syst. Sci., 82(1):3--22, 2016.
[151]
D. Vrande?ci´c and M. Krötzsch. Wikidata: a free collaborative knowledgebase. Commun. ACM, 57(10):78--85, 2014.
[152]
L. Wang, W. Zhao, Z. Wei, and J. Liu. Simkgc: simple contrastive knowledge graph completion with pre-trained language models. In ACL, 2022.
[153]
M. Wang, S. Wang, H. Yang, Z. Zhang, X. Chen, and G. Qi. Is visual context really helpful for knowledge graph? a representation learning perspective. In MM, 2021.
[154]
X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang. Kepler: a unified model for knowledge embedding and pre-trained language representation. Trans. Assoc. Comput. Linguistics, 9:176--194, 2021.
[155]
Y. Wang, A. Khan, T. Wu, J. Jin, and H. Yan. Semantic guided and response times bounded top-k similarity search over knowledge graphs. In ICDE, 2020.
[156]
Y. Wang, A. Khan, X. Xu, J. Jin, Q. Hong, and T. Fu. Aggregate queries on knowledge graphs: fast approximation with semantic-aware sampling. In ICDE, 2022.
[157]
Y. Wang, A. Khan, X. Xu, S. Ye, S. Pan, and Y. Zhou. Approximate and interactive processing of aggregate queries on knowledge graphs: a demonstration. In CIKM, 2022.
[158]
Y. Wang, Y. Li, J. Fan, C. Ye, and M. Chai. A survey of typical attributed graph queries. World Wide Web, 24(1):297--346, 2021.
[159]
Z. Wang, L. Li, Q. Li, and D. Zeng. Multimodal data enhanced representation learning for knowledge graphs. In IJCNN, 2019.
[160]
Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating on hyperplanes. In AAAI, 2014.
[161]
G. Weikum, X. L. Dong, S. Razniewski, and F. M. Suchanek. Machine knowledge: creation and curation of comprehensive knowledge bases. Found. Trends Databases, 10(2--4):108--490, 2021.
[162]
K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF storage and retrieval in jena2. In SWDB, 2003.
[163]
P. T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50--60, 2012.
[164]
M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and S. Sakr. Rdf data storage and query processing schemes: a survey. ACM Comput. Surv., 51(4), 2018.
[165]
R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun. Representation learning of knowledge graphs with entity descriptions. In AAAI, 2016.
[166]
R. Xie, Z. Liu, H. Luan, and M. Sun. Image-embodied knowledge representation learning. In IJCAI, 2017.
[167]
D. Xu, C. Ruan, E. Körpeoglu, S. Kumar, and K. Achan. Product knowledge graph embedding for e-commerce. In WSDM, 2020.
[168]
B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for learning and inference in knowledge bases. In ICLR, 2015.
[169]
D. Yang, P. Qing, Y. Li, H. Lu, and X. Lin. Gammae: gamma embeddings for logical queries on knowledge graphs. In EMNLP, 2022.
[170]
J. Yang, W. Yao, and W. Zhang. Keyword search on large graphs: a survey. Data Sci. Eng., 6(2):142--162, 2021.
[171]
S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and structureless graph querying. PVLDB, 7(7):565--576, 2014.
[172]
Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning. Hotpotqa: a dataset for diverse, explainable multi-hop question answering. In EMNLP, 2018.
[173]
J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword query reformulation on structured data. In ICDE, 2012.
[174]
M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. Liang, and J. Leskovec. Deep bidirectional language-knowledge graph pretraining. In NeurIPS, 2022.
[175]
D. Yu, C. Zhu, Y. Yang, and M. Zeng. Jaket: joint pre-training of knowledge graph and language understanding. In AAAI, 2022.
[176]
M. Zaib, W. E. Zhang, Q. Z. Sheng, A. Mahmood, and Y. Zhang. Conversational question answering: a survey. Knowl. Inf. Syst., 64(12):3151--3195, 2022.
[177]
L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang. GSI: gpu-friendly subgraph isomorphism. In ICDE, 2020.
[178]
M. Zhang, R. Dai, M. Dong, and T. He. Drlk: dynamic hierarchical reasoning with language model and knowledge graph for question answering. In EMNLP, 2022.
[179]
W. Zhang, J. Chen, J. Li, Z. Xu, J. Z. Pan, and H. Chen. Knowledge graph reasoning with logics and embeddings: survey and perspective. CoRR, abs/2202.07412, 2022.
[180]
W. Zhang, B. Paudel, L. Wang, J. Chen, H. Zhu, W. Zhang, A. Bernstein, and H. Chen. Iteratively learning embeddings and rules for knowledge graph reasoning. In WWW, 2019.
[181]
X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE: towards scalable I/O efficient SPARQL query evaluation on the cloud. In ICDE, 2013.
[182]
Z. Zhang, J. Wang, J. Chen, S. Ji, and F. Wu. Cone: cone embeddings for multi-hop reasoning over knowledge graphs. In NeurIPS, 2021.
[183]
D. Zheng, X. Song, C. Ma, Z. Tan, Z. Ye, J. Dong, H. Xiong, Z. Zhang, and G. Karypis. Dgl-ke: training knowledge graph embeddings at scale. In SIGIR, 2020.
[184]
W. Zheng, J. X. Yu, L. Zou, and H. Cheng. Question answering over knowledge graphs: question understanding via template decomposition. Proc. VLDB Endow., 11(11):1373--1386, 2018.
[185]
W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao. Semantic SPARQL similarity search over RDF knowledge graphs. PVLDB, 9(11):840--851, 2016.
[186]
H. Zhou, T. Young, M. Huang, H. Zhao, J. Xu, and X. Zhu. Commonsense knowledge aware conversation generation with graph attention. In IJCAI, 2018.
[187]
Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu. SPARK: adapting keyword query to semantic search. In ISWC. Springer, 2007.
[188]
Z. Zhu, M. Galkin, Z. Zhang, and J. Tang. Neural-symbolic models for logical queries on knowledge graphs. In ICML, 2022.
[189]
L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao. Natural language question answering over RDF: a graph data driven approach. In SIGMOD, 2014

Cited By

View all
  • (2025)Sublinear smart semantic search based on knowledge graph over encrypted databaseComputers & Security10.1016/j.cose.2025.104319151(104319)Online publication date: Apr-2025
  • (2024)CHALLENGES AND ROLE OF ONTOLOGY ENGINEERING IN CREATING THE KNOWLEDGE INDUSTRY: A RESEARCH-RELATED DESIGN PERSPECTIVEKIBERNETYKA TA SYSTEMNYI ANALIZ10.34229/KCA2522-9664.24.4.11(141-155)Online publication date: 2024
  • (2024)FUNDAMENTALS OF THE INTEGRATED USE OF NEURAL NETWORK AND ONTOLINGUISTIC PARADIGMS: A COMPREHENSIVE APPROACHKibernetyka ta Systemnyi Analiz10.34229/KCA2522-9664.24.1.12(134-149)Online publication date: 2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 52, Issue 2
June 2023
51 pages
ISSN:0163-5808
DOI:10.1145/3615952
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2023
Published in SIGMOD Volume 52, Issue 2

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)264
  • Downloads (Last 6 weeks)25
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Sublinear smart semantic search based on knowledge graph over encrypted databaseComputers & Security10.1016/j.cose.2025.104319151(104319)Online publication date: Apr-2025
  • (2024)CHALLENGES AND ROLE OF ONTOLOGY ENGINEERING IN CREATING THE KNOWLEDGE INDUSTRY: A RESEARCH-RELATED DESIGN PERSPECTIVEKIBERNETYKA TA SYSTEMNYI ANALIZ10.34229/KCA2522-9664.24.4.11(141-155)Online publication date: 2024
  • (2024)FUNDAMENTALS OF THE INTEGRATED USE OF NEURAL NETWORK AND ONTOLINGUISTIC PARADIGMS: A COMPREHENSIVE APPROACHKibernetyka ta Systemnyi Analiz10.34229/KCA2522-9664.24.1.12(134-149)Online publication date: 2024
  • (2024)Atom: An Efficient Query Serving System for Embedding-based Knowledge Graph Reasoning with Operator-level BatchingProceedings of the ACM on Management of Data10.1145/36771292:4(1-29)Online publication date: 30-Sep-2024
  • (2024)LinkQ: An LLM-Assisted Visual Interface for Knowledge Graph Question-Answering2024 IEEE Visualization and Visual Analytics (VIS)10.1109/VIS55277.2024.00031(116-120)Online publication date: 13-Oct-2024
  • (2024)Synergies Between Graph Data Management and Machine Learning in Graph Data Pipeline2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00457(5655-5656)Online publication date: 13-May-2024
  • (2024)A dynamic preference recommendation model based on spatiotemporal knowledge graphsComplex & Intelligent Systems10.1007/s40747-024-01658-y11:1Online publication date: 18-Nov-2024
  • (2024)Challenges and Role of Ontology Engineering in Creating the Knowledge Industry: A Research-Related Design PerspectiveCybernetics and Systems Analysis10.1007/s10559-024-00702-660:4(633-645)Online publication date: 30-Jul-2024
  • (2024)Fundamentals of the Integrated Use of Neural Network and Ontolinguistic Paradigms: A Comprehensive ApproachCybernetics and Systems Analysis10.1007/s10559-024-00652-z60:1(111-123)Online publication date: 7-Feb-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media