[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
survey

Vehicular Edge Computing: Architecture, Resource Management, Security, and Challenges

Published: 23 November 2021 Publication History

Abstract

Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.

References

[1]
Mohammad Aazam, Marc St-Hilaire, Chung-Horng Lung, and Ioannis Lambadaris. 2016. PRE-Fog: IoT trace-based probabilistic resource estimation at Fog. In Proceedings of the 13th IEEE Annual Consumer Communications and Networking Conference (CCNC’16). 12–17.
[2]
Ademar T. Akabane, Roger Immich, Edmundo R. M. Madeira, and Leandro A. Villas. 2018. imob: An intelligent urban mobility management system based on vehicular social networks. In Proceedings of the IEEE Vehicular Networking Conference (VNC’18). 1–8.
[3]
A. T. Akabane, R. Immich, E. R. M. Madeira, and L. A. Villas. 2018. iMOB: An intelligent urban mobility management system based on vehicular social networks. In Proceedings of the IEEE Vehicular Networking Conference (VNC’18). 1–8.
[4]
Ademar T. Akabane, Roger Immich, Richard W. Pazzi, Edmundo R. M. Madeira, and Leandro A. Villas. 2018. TRUSTed: A distributed system for information management and knowledge distribution in VANETs. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’18). 1–6.
[5]
G. Andrienko, N. Andrienko, M. Mladenov, M. Mock, and C. Politz. 2010. Discovering bits of place histories from people’s activity traces. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology. 59–66.
[6]
Hamid Reza Arkian, Reza Ebrahimi Atani, Abolfazl Diyanat, and Atefe Pourkhalili. 2015. A cluster-based vehicular cloud architecture with learning-based resource management. J. Supercomput. 71, 4 (2015), 1401–1426.
[7]
Muhammad Arshad, Zahid Ullah, Naveed Ahmad, Muhammad Khalid, Haithiam Criuckshank, and Yue Cao. 2018. A survey of local/cooperative-based malicious information detection techniques in VANETs. Springer EURASIP J. Wireless Commun. Netw. 2018, 1 (2018), 62.
[8]
Suzhi Bi and Ying Jun Zhang. 2018. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wireless Commun. 17, 6 (2018), 4177–4190.
[9]
Salim Bitam, Abdelhamid Mellouk, and Sherali Zeadally. 2015. VANET-cloud: A generic cloud computing model for vehicular Ad Hoc networks. IEEE Wireless Commun. 22, 1 (2015), 96–102.
[10]
Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. 2016. Integration of cloud computing and internet of things: a survey. Elsevier Future Gen. Comput. Syst. 56 (2016), 684–700.
[11]
A. Boukerche and R. I. Meneguette. 2017. Vehicular cloud network: A new challenge for resource management based systems. In Proceedings of the 13th International Wireless Communications and Mobile Computing Conference (IWCMC’17). 159–164.
[12]
Azzedine Boukerche and Victor Soto. 2020. Computation offloading and retrieval for vehicular edge computing: Algorithms, models, and classification. ACM Comput. Surv. 53, 4, Article 80 (Aug. 2020), 35 pages. https://doi.org/10.1145/3392064
[13]
Maria Borjesson and Isak Rubensson. 2019. Satisfaction with crowding and other attributes in public transport. Transport Policy 79 (2019), 213–222. https://doi.org/10.1016/j.tranpol.2019.05.010
[14]
Min Chen and Yixue Hao. 2018. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Select. Areas Commun. 36, 3 (2018), 587–597.
[15]
S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao. 2017. Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Commun. Standards Mag. 1, 2 (2017), 70–76.
[16]
S. Chen, X. Yuan, Z. Wang, C. Guo, J. Liang, Z. Wang, X. Zhang, and J. Zhang. 2016. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Trans. Visual. Comput. Graph. 22, 1 (2016), 270–279.
[17]
Yi Chen, Hong Wen, Jinsong Wu, Huanhuan Song, Aidong Xu, Yixin Jiang, Tengyue Zhang, and Zhen Wang. 2019. Clustering based physical-layer authentication in edge computing systems with asymmetric resources. MDPI Sensors 19, 8 (2019), 1926.
[18]
ETSI Mobile Edge Computing, I Initiative, et al. 2014. Mobile-edge computing: Introductory technical white paper. ETSI: Sophia Antipolis, France (2014). 1–36.
[19]
Nicola Cordeschi, Danilo Amendola, Mohammad Shojafar, and Enzo Baccarelli. 2015. Distributed and adaptive resource management in Cloud-assisted Cognitive Radio Vehicular Networks with hard reliability guarantees. Vehic. Commun. 2, 1 (2015), 1–12.
[20]
Sergio Correia, Azzedine Boukerche, and Rodolfo I Meneguette. 2017. An architecture for hierarchical software-defined vehicular networks. IEEE Commun. Mag. 55, 7 (2017), 80–86.
[21]
Yueyue Dai, Du Xu, Sabita Maharjan, Zhuang Chen, Qian He, and Yan Zhang. 2019. Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 33, 3 (2019), 10–17.
[22]
Y. Dai, D. Xu, S. Maharjan, and Y. Zhang. 2018. Joint offloading and resource allocation in vehicular edge computing and networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’18). 1–7. https://doi.org/10.1109/GLOCOM.2018.8648004
[23]
Tasneem S. J. Darwish and Kamalrulnizam Abu Bakar. 2018. Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues. IEEE Access 6 (2018), 15679–15701.
[24]
M. De Donno, K. Tange, and N. Dragoni. 2019. Foundations and evolution of modern computing paradigms: Cloud, IoT, Edge, and fog. IEEE Access 7 (2019), 150936–150948.
[25]
A. B. De Souza, P. A. L. Rego, T. Carneiro, J. D. C. Rodrigues, P. P. R. Filho, J. N. De Souza, V. Chamola, V. H. C. De Albuquerque, and B. Sikdar. 2020. Computation offloading for vehicular environments: A survey. IEEE Access 8 (2020), 198214–198243. https://doi.org/10.1109/ACCESS.2020.3033828
[26]
A. M. de Souza, R. S. Yokoyama, N. L. S. da Fonseca, R. I. Meneguette, and L. A. Villas. 2015. GARUDA: A new geographical accident aware solution to reduce urban congestion. In Proceedings of the IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. 596–602.
[27]
Jianbo Du, F. Richard Yu, Xiaoli Chu, Jie Feng, and Guangyue Lu. 2018. Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. IEEE Trans. Vehic. Technol. 68, 2 (2018), 1079–1092.
[28]
Rudzidatul Akmam Dziyauddin, Dusit Niyato, Nguyen Cong Luong, Mohd Azri Mohd Izhar, Marwan Hadhari, and Salwani Daud. 2019. Computation offloading and content caching delivery in vehicular edge computing: A survey. Retrieved from https://arXiv:1912.07803.
[29]
S. Eichler. 2007. Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proceedings of the IEEE 66th Vehicular Technology Conference. 2199–2203.
[30]
Hesham El-Sayed and Moumena Chaqfeh. 2019. Exploiting mobile edge computing for enhancing vehicular applications in smart cities. MDPI Sensors 19, 5 (2019), 1073.
[31]
Sangsha Fang and Pingzhi Fan. 2017. A cooperative caching algorithm for cluster-based vehicular content networks with vehicular caches. In Proceedings of the IEEE Globecom Workshops (GC’17). 1–6.
[32]
Mohd Umar Farooq, Mohammad Pasha, and Khaleel Ur Rahman Khan. 2014. A data dissemination model for Cloud enabled VANETs using In-Vehicular resources. In Proceedings of the International Conference on Computing for Sustainable Global Development (INDIACom’14). 458–462.
[33]
Jingyun Feng, Zhi Liu, Celimuge Wu, and Yusheng Ji. 2017. AVE: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans. Vehic. Technol. 66, 12 (2017), 10660–10675.
[34]
Ryan Florin and Stephan Olariu. 2018. Toward approximating job completion time in vehicular clouds. IEEE Trans. Intell. Transport. Syst. 20, 8 (2018), 3168–3177.
[35]
Sahil Garg, Amritpal Singh, Shalini Batra, Neeraj Kumar, and Laurence T Yang. 2018. UAV-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Netw. 32, 3 (2018), 42–51.
[36]
Mario Gerla. 2012. Vehicular cloud computing. In Proceedings of the the 11th annual mediterranean ad hoc networking workshop (Med-Hoc-Net’12). 152–155.
[37]
Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C. M. Leung. 2015. Developing IoT applications in the fog: A distributed dataflow approach. In Proceedings of the 5th IEEE International Conference on the Internet of Things (IOT’15). 155–162.
[38]
Hongzhi Guo and Jiajia Liu. 2018. Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks. IEEE Trans. Vehic. Technol. 67, 5 (2018), 4514–4526.
[39]
Qiangqiang Guo, Li Li, and Xuegang Jeff Ban. 2019. Urban traffic signal control with connected and automated vehicles: A survey. Elsevier Transport. Res. Part C: Emerg. Technol. 101 (2019), 313–334.
[40]
Hamssa Hasrouny, Abed Ellatif Samhat, Carole Bassil, and Anis Laouiti. 2017. VANet security challenges and solutions: A survey. Elsevier Vehic. Commun. 7 (2017), 7–20.
[41]
N. Hassan, K. A. Yau, and C. Wu. 2019. Edge computing in 5G: A review. IEEE Access 7 (2019), 127276–127289.
[42]
Brent Hirschman, Pranav Mehta, Kannan Babu Ramia, Ashok Sunder Rajan, Edwin Dylag, Ajaypal Singh, and Martin McDonald. 2015. High-performance evolved packet core signaling and bearer processing on general-purpose processors. IEEE Netw. 29, 3 (2015), 6–14.
[43]
Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen. 2016. Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE Trans. Vehic. Technol. 65, 6 (2016), 3860–3873.
[44]
Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015. Mobile edge computing—A key technology towards 5G. ETSI White Paper 11, 11 (2015), 1–16.
[45]
Cheng Huang, Rongxing Lu, and Kim-Kwang Raymond Choo. 2017. Vehicular fog computing: Architecture, use case, and security and forensic challenges. IEEE Commun. Mag. 55, 11 (2017), 105–111.
[46]
Dijiang Huang, Satyajayant Misra, Mayank Verma, and Guoliang Xue. 2011. PACP: An efficient pseudonymous authentication-based conditional privacy protocol for VANETs. IEEE Trans. Intell. Transport. Syst. 12, 3 (2011), 736–746.
[47]
W. Huang, T. Song, Y. Yang, and Y. Zhang. 2019. Cluster-based cooperative caching with mobility prediction in vehicular named data networking. IEEE Access 7 (2019), 23442–23458.
[48]
X. Huang, L. He, and W. Zhang. 2020. Vehicle speed aware computing task offloading and resource allocation based on multi-agent reinforcement learning in a vehicular edge computing network. In Proceedings of the IEEE International Conference on Edge Computing (EDGE’20). 1–8. https://doi.org/10.1109/EDGE50951.2020.00008
[49]
Xumin Huang, Peichun Li, and Rong Yu. 2019. Social welfare maximization in container-based task scheduling for parked vehicle edge computing. IEEE Commun. Lett. 23, 8 (2019), 1347–1351.
[50]
X. Huang, R. Yu, J. Kang, and Y. Zhang. 2017. Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access 5 (2017), 25408–25420.
[51]
Xumin Huang, Rong Yu, Jiawen Kang, and Yan Zhang. 2017. Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access 5 (2017), 25408–25420.
[52]
Xumin Huang, Rong Yu, Jianqi Liu, and Lei Shu. 2018. Parked vehicle edge computing: Exploiting opportunistic resources for distributed mobile applications. IEEE Access 6 (2018), 66649–66663.
[53]
Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S Tucker. 2016. Fog computing may help to save energy in cloud computing. IEEE J. Select. Areas Commun. 34, 5 (2016), 1728–1739.
[54]
Jiawen Kang, Rong Yu, Xumin Huang, Maoqiang Wu, Sabita Maharjan, Shengli Xie, and Yan Zhang. 2018. Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 6, 3 (2018), 4660–4670.
[55]
J. Kang, R. Yu, X. Huang, and Y. Zhang. 2018. Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transport. Syst. 19, 8 (2018), 2627–2637.
[56]
Latif U. Khan, Ibrar Yaqoob, Nguyen H. Tran, S. M. Ahsan Kazmi, Tri Nguyen Dang, and Choong Seon Hong. 2020. Edge computing enabled smart cities: A comprehensive survey. IEEE Internet Things J. 7, 10 (2020), 10200–10232.
[57]
Neeraj Kumar, Rahat Iqbal, Sudip Misra, and Joel J. P. C. Rodrigues. 2015. Bayesian coalition game for contention-aware reliable data forwarding in vehicular mobile cloud. Future Gen. Comput. Syst. 48 (2015), 60–72.
[58]
E. Lee, E. K. Lee, M. Gerla, and S. Y. Oh. 2014. Vehicular cloud networking: Architecture and design principles. IEEE Commun. Mag. 52, 2 (Feb. 2014), 148–155.
[59]
Wangbong Lee, Kidong Nam, Hak-Gyun Roh, and Sang-Ha Kim. 2016. A gateway-based fog computing architecture for wireless sensors and actuator networks. In Proceedings of the 18th IEEE International Conference on Advanced Communication Technology (ICACT’16). 210–213.
[60]
Chunhai Li, Siming Wang, Xumin Huang, Xiaohuan Li, Rong Yu, and Feng Zhao. 2018. Parked vehicular computing for energy-efficient Internet of vehicles: A contract theoretic approach. IEEE Internet Things J. 6, 4 (2018), 6079–6088.
[61]
M. Li, P. Si, and Y. Zhang. 2018. Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans. Vehic. Technol. 67, 10 (2018), 9073–9086.
[62]
Meng Li, Liehuang Zhu, Zijian Zhang, Xiaojiang Du, and Mohsen Guizani. 2018. Pros: A privacy-preserving route-sharing service via vehicular fog computing. IEEE Access 6 (2018), 66188–66197.
[63]
Yong Li and Min Chen. 2015. Software-defined network function virtualization: A survey. IEEE Access 3 (2015), 2542–2553.
[64]
D. Lin, J. Kang, A. Squicciarini, Y. Wu, S. Gurung, and O. Tonguz. 2017. MoZo: A moving zone based routing protocol using pure V2V communication in VANETs. IEEE Trans. Mobile Comput. 16, 5 (2017), 1357–1370.
[65]
Fuhong Lin, Xing Lü, Ilsun You, and Xianwei Zhou. 2018. A novel utility based resource management scheme in vehicular social edge computing. IEEE Access 6 (2018), 66673–66684.
[66]
Chang Liu, Juan Luo, and Qiu Pan. 2015. A Distributed Location-Based Service Discovery Protocol for Vehicular Ad-Hoc Networks. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing.50–63.
[67]
Genping Liu, Bu-Sung Lee, Boon-Chong Seet, Chuan-Heng Foh, Kai-Juan Wong, and Keok-Kee Lee. 2004. A routing strategy for metropolis vehicular communications. Springer Information Networking. Networking Technologies for Broadband and Mobile Networks. Springer, 134–143.
[68]
Jianhui Liu and Qi Zhang. 2018. Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6 (2018), 12825–12837.
[69]
Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. 2020. Vehicular edge computing and networking: A survey. Springer Mobile Networks and Applications. Springer, 1–24.
[70]
Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019. Edge computing for autonomous driving: Opportunities and challenges. Proc. IEEE 107, 8 (2019), 1697–1716.
[71]
Ying-ji Liu, Yu Yao, Cheng-xu Liu, Lin-tao Chu, and Xu Liu. 2012. A Remote On-Line Diagnostic System for Vehicles by Integrating OBD, GPS and 3G Techniques. Int. J. Hum. Soc. Sci. 3, 8 (2012), 607–614.
[72]
Minghui Liwang, Shijie Dai, Zhibin Gao, Yuliang Tang, and Huaiyu Dai. 2018. A truthful reverse-auction mechanism for computation offloading in cloud-enabled vehicular network. IEEE Internet Things J. 6, 3 (2018), 4214–4227.
[73]
George Loukas, Eirini Karapistoli, Emmanouil Panaousis, Panagiotis Sarigiannidis, Anatolij Bezemskij, and Tuan Vuong. 2019. A taxonomy and survey of cyber-physical intrusion detection approaches for vehicles. Elsevier Ad Hoc Netw. 84 (2019), 124–147.
[74]
Massilon Lourenço, Thiago S. Gomides, Fernanda S. H. de Souza, Rodolfo I. Meneguette, and Daniel L. Guidoni. 2018. A traffic management service based on V2I communication for vehicular Ad-Hoc networks. InProceedings of the 10th Latin America Networking Conference (LANC’18). 25–31. https://doi.org/10.1145/3277103.3277132
[75]
J. Luo, T. Zhong, and X. Jin. 2016. Service discovery middleware based on QoS in VANET. In Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. 2075–2080.
[76]
Lichuan Ma, Xuefeng Liu, Qingqi Pei, and Yong Xiang. 2018. Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Serv. Comput. 12, 5 (2018), 786–799.
[77]
Lichuan Ma, Yong Xiang, Qingqi Pei, Yang Xiang, and Haojin Zhu. 2017. Robust reputation-based cooperative spectrum sensing via imperfect common control channel. IEEE Trans. Vehic. Technol. 67, 5 (2017), 3950–3963.
[78]
P. Mach and Z. Becvar. 2017. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surveys Tutor. 19, 3 (2017), 1628–1656.
[79]
Guilherme Maia, Andre L. L. Aquino, Aline Viana, Azzedine Boukerche, and Antonio A. F. Loureiro. 2012. HyDi: A hybrid data dissemination protocol for highway scenarios in vehicular Ad Hoc networks. In Proceedings of the 2nd ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. 115–122.
[80]
C. Makaya, S. Das, and F. J. Lin. 2012. Seamless data offload and flow mobility in vehicular communications networks. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW’12). 338–343.
[81]
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surveys Tutor. 19, 4 (2017), 2322–2358.
[82]
Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38, 2 (2008), 69–74.
[83]
Telemaco Melia, Carlos Bernardos, Antonio de la Oliva, Fabio Giust, and Maria Calderon. 2011. IP flow mobility in PMIPv6 based networks: Solution design and experimental evaluation. Springer Wireless Personal Commun. 61 (2011), 603–627. Issue 4.
[84]
Rodolfo Meneguette, Azzedine Boukerche, and Robson De Grande. [n.d.]. SMART: An efficient resource search and management scheme for vehicular cloud-connected system. In Proceedings of the IEEE Global Communications Conference: Mobile and Wireless Networks (Globecom’16). Washington.
[85]
Rodolfo Ipolito Meneguette, Luiz Fernando Bittencourt, and Edmundo Roberto Mauro Madeira. 2013. A seamless flow mobility management architecture for vehicular communication networks. J. Commun. Netw. 15, 2 (Apr. 2013), 207–216.
[86]
Rodolfo I. Meneguette and Azzedine Boukerche. 2017. SERVitES: An efficient search and allocation resource protocol based on V2V communication for vehicular cloud. Elsevier Comput. Netw. 123 (2017), 104–118. https://doi.org/10.1016/j.comnet.2017.05.014
[87]
R. I. Meneguette and A. Boukerche. 2020. Vehicular clouds leveraging mobile urban computing through resource discovery. IEEE Trans. Intell. Transport. Syst. 21, 6 (2020), 2640–2647.
[88]
Rodolfo Ipolito Meneguette, Azzedine Boukerche, Guilherme Maia, Antonio A. F. Loureiro, and Leandro A. Villas. 2014. A self-adaptive data dissemination solution for intelligent transportation systems. In Proceedings of the 11th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks. 69–76.
[89]
R. I. Meneguette, A. Boukerche, and A. H. M. Pimenta. 2019. AVARAC: An availability-based resource allocation scheme for vehicular cloud. IEEE Trans. Intell. Transport. Syst. 20, 10 (2019), 3688–3699.
[90]
Rodolfo I. Meneguette, Robson E. De Grande, and Antonio A. F. Loureiro. 2018. Intelligent Transport System in Smart Cities. Springer.
[91]
R. I. Meneguette, G. Maia, E. R. M. Madeira, A. A. F. Loureiro, and L. A. Villas. 2014. Autonomic data dissemination in highway Vehicular Ad Hoc Networks with diverse traffic conditions. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’14). 1–6.
[92]
R. I. Meneguette, D. O. Rodrigues, J. B. D. da Costa, D. Rosario, and L. A. Villas. 2019. A virtual machine migration policy based on multiple attribute decision in vehicular cloud scenario. In Proceedings of the IEEE International Conference on Communications (ICC’19). 1–6.
[93]
H. Meng, K. Zheng, P. Chatzimisios, H. Zhao, and L. Ma. 2015. A utility-based resource allocation scheme in cloud-assisted vehicular network architecture. In Proceedings of the IEEE International Conference on Communication Workshop. 1833–1838.
[94]
K. Mershad and H. Artail. 2013. A framework for implementing mobile cloud services in VANETs. In Proceedings of the IEEE 6th International Conference on Cloud Computing. 83–90.
[95]
Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, and Raouf Boutaba. 2015. Network function virtualization: State-of-the-art and research challenges. IEEE Commun. Surveys Tutor. 18, 1 (2015), 236–262.
[96]
Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (2015), 91.
[97]
Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. 2014. Grey wolf optimizer. Elsevier Adv. Eng. Softw. 69 (2014), 46–61.
[98]
Mohamed Saleem Haja Nazmudeen, Au Thien Wan, and Seyed M. Buhari. 2016. Improved throughput for power line communication (PLC) for smart meters using fog computing based data aggregation approach. In Proceedings of the IEEE International Smart Cities Conference (ISC2’16). 1–4.
[99]
Kapileswar Nellore and Gerhard P. Hancke. 2016. A survey on urban traffic management system using wireless sensor networks. MDPI Sensors 16, 2 (2016), 157.
[100]
Tri DT Nguyen, Tien-Dung Nguyen, Van Dung Nguyen, Xuan-Qui Pham, Eui-Nam Huh et al. 2018. Cost-effective resource sharing in an internet of vehicles-employed mobile edge computing environment. MDPI Symm. 10, 11 (2018), 594.
[101]
Z. Ning, J. Huang, and X. Wang. 2019. Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Commun. 26, 1 (2019), 87–93.
[102]
Jéferson Campos Nobre, Allan M. de Souza, Denis Rosário, Cristiano Both, Leandro A. Villas, Eduardo Cerqueira, Torsten Braun, and Mario Gerla. 2019. Vehicular software-defined networking and fog computing: Integration and design principles. Elsevier Ad Hoc Netw. 82 (2019), 172–181.
[103]
S. Olariu. 2020. A survey of vehicular cloud research: Trends, applications and challenges. IEEE Trans. Intell. Transport. Syst. 21, 6 (2020), 2648–2663. https://doi.org/10.1109/TITS.2019.2959743
[104]
Stephan Olariu, Tihomir Hristov, and Gongjun Yan. 2013. The next paradigm shift: from vehicular networks to vehicular clouds. Mobile Ad Hoc Networking: Cutting Edge Directions. 645–700.
[105]
Stephan Olariu, Ismail Khalil, and Mahmoud Abuelela. 2011. Taking VANET to the clouds. Int. J. Pervas. Comput. Commun. 7, 1 (2011), 7–21.
[106]
Nuria Oliver and Alex P. Pentland. 2000. Driver behavior recognition and prediction in a SmartCar, Vol. 4023. 280–290.
[107]
Jessica Oueis, Emilio Calvanese Strinati, and Sergio Barbarossa. 2015. The fog balancing: Load distribution for small cell cloud computing. In Proceedings of the IEEE 81st vehicular technology conference (VTC’15). 1–6.
[108]
Juan Pan, Iulian Sandu Popa, and Cristian Borcea. 2016. Divert: A distributed vehicular traffic re-routing system for congestion avoidance. IEEE Trans. Mobile Comput. 16, 1 (2016), 58–72w.
[109]
Haixia Peng, Qiang Ye, and Xuemin Shen. 2019. Spectrum management for multi-access edge computing in autonomous vehicular networks. IEEE Trans. Intell. Transport. Syst. 21, 7 (2019), 3001–3012.
[110]
Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang. 2016. Fog-computing-based radio access networks: Issues and challenges. IEEE Netw. 30, 4 (2016), 46–53.
[111]
Rickson S. Pereira, Douglas D. Lieira, Marco A. C. da Silva, Adinovam H. M. Pimenta, Joahannes B. D. da Costa, Denis Rosário, Leandro Villas, and Rodolfo I. Meneguette. 2020. RELIABLE: Resource allocation mechanism for 5G network using mobile edge computing. Sensors 20, 19 (2020), 5449.
[112]
R. S. Pereira, D. D. Lieira, M. A. C. da Silva, A. H. M. Pimenta, J. B. D. da Costa, D. Rosario, and R. I. Meneguette. 2019. A novel fog-based resource allocation policy for vehicular clouds in the highway environment. In Proceedings of the IEEE Latin-American Conference on Communications (LATINCOM’19). 1–6.
[113]
Nisha Peter. 2015. Fog computing and its real time applications. Int. J. Emerg. Technol. Adv. Eng. 5, 6 (2015), 266–269.
[114]
Xuan-Qui Pham, Tien-Dung Nguyen, VanDung Nguyen, and Eui-Nam Huh. 2019. Joint node selection and resource allocation for task offloading in scalable vehicle-assisted multi-access edge computing. MDPI Symm. 11, 1 (2019), 58.
[115]
Volkswagen Tyre Pressure. 2020. How Many Cars Are There In The World Today?Retrieved from https://www.rfidtires.com/how-many-cars-world.html.
[116]
G. Qiao, S. Leng, K. Zhang, and Y. He. 2018. Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun. Mag. 56, 8 (2018), 48–54.
[117]
Salman Raza, Shangguang Wang, Manzoor Ahmed, and Muhammad Rizwan Anwar. 2019. A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions. Wireless Commun. Mobile Comput. 2019, Article 3159762 (2019), 19 pages.
[118]
Dimitrios Rimpas, Andreas Papadakis, and Maria Samarakou. 2020. OBD-II sensor diagnostics for monitoring vehicle operation and consumption. Elsevier Energy Rep. 6 (2020), 55–63.
[119]
Geraldo P. Rocha Filho, Rodolfo I. Meneguette, Jos R. Torres Neto, Alan Valejo, Li Weigang, Jó Ueyama, Gustavo Pessin, and Leandro A. Villas. 2020. Enhancing intelligence in traffic management systems to aid in vehicle traffic congestion problems in smart cities. Elsevier Ad Hoc Netw. 107, 1 (2020), 102265.
[120]
Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2018. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Elsevier Future Gen. Comput. Syst. 78 (2018), 680–698.
[121]
Thomas L. Saaty. 2000. Fundamentals of Decision Making and Priority theory with the Analytic Hierarchy Process. Vol. 6.
[122]
Dario Sabella, Alex Reznik, and Rui Frazao. 2019. Multi-Access Edge Computing in Action. CRC Press.
[123]
D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust. 2016. Mobile-edge computing architecture: The role of MEC in the internet of things. IEEE Consum. Electron. Mag. 5, 4 (2016), 84–91.
[124]
Fatih Sakiz and Sevil Sen. 2017. A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV. Elsevier Ad Hoc Netw. 61 (2017), 33–50.
[125]
Mohammad A. Salahuddin, Ala Al-Fuqaha, Mohsen Guizani, and Soumaya Cherkaoui. 2014. RSU cloud and its resource management in support of enhanced vehicular applications. In Proceedings of the IEEE Globecom Workshops (GC’14). 127–132.
[126]
M. A. Salahuddin, A. Al-Fuqaha, M. Guizani, and S. Cherkaoui. 2014. RSU cloud and its resource management in support of enhanced vehicular applications. In Proceedings of the IEEE Globecom Workshops. 127–132.
[127]
Sparsh Sharma and Ajay Kaul. 2018. A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET Cloud. Elsevier Vehic. Commun. 12 (2018), 138–164.
[128]
Surbhi Sharma and Baijnath Kaushik. 2019. A survey on internet of vehicles: Applications, security issues & solutions. Vehic. Commun. 20 (2019), 100182. https://doi.org/10.1016/j.vehcom.2019.100182
[129]
M. Shojafar, N. Cordeschi, and E. Baccarelli. 2016. Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans. Cloud Comput.99 (2016), 1.
[130]
R. El Sibai, T. Atechian, J. B. Abdo, R. Tawil, and J. Demerjian. 2015. Connectivity-aware service provision in vehicular cloud. In Proceedings of the International Conference on Cloud Technologies and Applications. 1–5.
[131]
Seyed Ahmad Soleymani, Abdul Hanan Abdullah, Mahdi Zareei, Mohammad Hossein Anisi, Cesar Vargas-Rosales, Muhammad Khurram Khan, and Shidrokh Goudarzi. 2017. A secure trust model based on fuzzy logic in vehicular ad hoc networks with fog computing. IEEE Access 5 (2017), 15619–15629.
[132]
William Stallings, Lawrie Brown, Michael D. Bauer, and Arup Kumar Bhattacharjee. 2012. Computer Security: Principles and Practice. Pearson Education, Upper Saddle River, NJ.
[133]
Ivan Stojmenovic and Sheng Wen. 2014. The fog computing paradigm: Scenarios and security issues. In Proceedings of the IEEE Federated Conference on Computer Science and Information Systems. 1–8.
[134]
F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen. 2018. Cooperative task scheduling for computation offloading in vehicular cloud. IEEE Trans. Vehic. Technol. 67, 11 (2018), 11049–11061.
[135]
Yuxuan Sun, Xueying Guo, Jinhui Song, Sheng Zhou, Zhiyuan Jiang, Xin Liu, and Zhisheng Niu. 2019. Adaptive learning-based task offloading for vehicular edge computing systems. IEEE Trans. Vehic. Technol. 68, 4 (2019), 3061–3074.
[136]
J. Tao, Z. Zhang, F. Feng, J. He, and Y. Xu. 2015. Non-cooperative resource allocation scheme for data access in VANET cloud environment. In Proceedings of the 3rd International Conference on Advanced Cloud and Big Data. 190–196.
[137]
Neyre Tekbiyik and Elif Uysal-Biyikoglu. 2011. Energy efficient wireless unicast routing alternatives for machine-to-machine networks. Elsevier J. Netw. Comput. Appl. 34, 5 (2011), 1587–1614.
[138]
H. Teng, W. Liu, T. Wang, X. Kui, S. Zhang, and N. N. Xiong. 2019. A Collaborative code dissemination schemes through two-way vehicle to everything (V2X) communications for urban computing. IEEE Access 7 (2019), 145546–145566.
[139]
Eran Toch, Boaz Lerner, Eyal Ben-Zion, and Irad Ben-Gal. 2019. Analyzing large-scale human mobility data: A survey of machine learning methods and applications. Springer Knowl. Info. Syst. 58, 3 (2019), 501–523.
[140]
Karima Velasquez, David Perez Abreu, Diogo Gonçalves, Luiz Bittencourt, Marilia Curado, Edmundo Monteiro, and Edmundo Madeira. 2017. Service orchestration in fog environments. In Proceedings of the IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud’17). 329–336.
[141]
L. A. Villas, A. Boukerche, H. S. Ramos, H. A. B. F. de Oliveira, R. B. de Araujo, and A. A. F. Loureiro. 2013. DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans. Comput. 62, 4 (2013), 676–689.
[142]
Samo Vodopivec, Janez Bester, and Andrej Kos. 2014. A multihoming clustering algorithm for vehicular ad hoc networks. Int. J. Distrib. Sensor Netw. 10, 3 (2014), 107085.
[143]
H. Wang, T. Liu, B. Kim, C. W. Lin, S. Shiraishi, J. Xie, and Z. Han. 2020. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Commun. Surveys Tutor. 22, 4 (2020), 2349–2377. https://doi.org/10.1109/COMST.2020.3020854
[144]
Siming Wang, Zehang Zhang, Rong Yu, and Yan Zhang. 2017. Low-latency caching with auction game in vehicular edge computing. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC’17). 1–6.
[145]
Z. Wang, S. Zheng, Q. Ge, and K. Li. 2020. Online offloading scheduling and resource allocation algorithms for vehicular edge computing system. IEEE Access 8 (2020), 52428–52442. https://doi.org/10.1109/ACCESS.2020.2981045
[146]
Md Whaiduzzaman, Mehdi Sookhak, Abdullah Gani, and Rajkumar Buyya. 2014. A survey on vehicular cloud computing. Elsevier J. Netw. Comput. Appl. 40 (2014), 325–344.
[147]
W. Wu, J. Xu, H. Zeng, Y. Zheng, H. Qu, B. Ni, M. Yuan, and L. M. Ni. 2016. TelCoVis: Visual exploration of co-occurrence in urban human mobility based on telco data. IEEE Trans. Visual. Comput. Graph. 22, 1 (2016), 935–944.
[148]
Yu Xiao and Chao Zhu. 2017. Vehicular fog computing: Vision and challenges. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom’17). 6–9.
[149]
K. Xiong, S. Leng, C. Huang, C. Yuen, and Y. L. Guan. 2020. Intelligent task offloading for heterogeneous V2X communications. IEEE Trans. Intell. Transport. Syst. 22, 4 (2020), 2226–2238.
[150]
D. Sabella N. Sprecher Y. C. Hu, M. Patel and V. Young. 2015. Mobile edge computing-A key technology towards 5G. In ETSI White Paper, Vol. 11. 1–16.
[151]
C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie. 2019. Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7 (2019), 26652–26664.
[152]
C. Yang, W. Lou, Y. Liu, and S. Xie. 2020. Resource allocation for edge computing-based vehicle platoon on freeway: A contract-optimization approach. IEEE Trans. Vehic. Technol. 69, 12 (2020), 15988–16000. https://doi.org/10.1109/TVT.2020.3039851
[153]
Xue Yang, Leibo Liu, Nitin H. Vaidya, and Feng Zhao. 2004. A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the IEEE Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services. 114–123.
[154]
Zhe Yang, Kan Yang, Lei Lei, Kan Zheng, and Victor C. M. Leung. 2018. Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J. 6, 2 (2018), 1495–1505.
[155]
Qingsong Yao, Jianfeng Ma, Rui Li, Xinghua Li, Jinku Li, and Jiao Liu. 2019. Energy-aware RFID authentication in Edge computing. IEEE Access 7 (2019), 77964–77980.
[156]
Shanhe Yi, Cheng Li, and Qun Li. 2015. A survey of fog computing: Concepts, applications and issues. In Proceedings of the Workshop on Mobile Big Data. 37–42.
[157]
Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2019. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Architect. 98 (2019), 289–330. https://doi.org/10.1016/j.sysarc.2019.02.009
[158]
R. Yu, X. Huang, J. Kang, J. Ding, S. Maharjan, S. Gjessing, and Y. Zhang. 2015. Cooperative resource management in cloud-enabled vehicular networks. IEEE Trans. Industr. Electron. 62, 12 (Dec. 2015), 7938–7951.
[159]
R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang. 2013. Toward cloud-based vehicular networks with efficient resource management. IEEE Netw. 27, 5 (Sept. 2013), 48–55.
[160]
Shuai Yu, Rami Langar, Xiaoming Fu, Li Wang, and Zhu Han. 2018. Computation offloading with data caching enhancement for mobile edge computing. IEEE Trans. Vehic. Technol. 67, 11 (2018), 11098–11112.
[161]
Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. 2016. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65, 12 (2016), 3702–3712.
[162]
F. Zeng, Q. Chen, L. Meng, and J. Wu. 2020. Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans. Intell. Transport. Syst. 22, 6 (2020), 3247–3257. https://doi.org/10.1109/TITS.2020.2980422
[163]
Cheng Zhang and Zixuan Zheng. 2019. Task migration for mobile edge computing using deep reinforcement learning. Future Gen. Comput. Syst. 96 (2019), 111–118. https://doi.org/10.1016/j.future.2019.01.059
[164]
J. Zhang and K. B. Letaief. 2020. Mobile edge intelligence and computing for the internet of vehicles. Proc. IEEE 108, 2 (2020), 246–261. https://doi.org/10.1109/JPROC.2019.2947490
[165]
Ke Zhang, Yuming Mao, Supeng Leng, Sabita Maharjan, Alexey Vinel, and Yan Zhang. 2019. Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks. Springer Mobile Netw. Appl. 24, 3 (2019), 1003–1014.
[166]
Y. Zhang, X. Qin, and X. Song. 2020. Mobility-aware cooperative task offloading and resource allocation in vehicular edge computing. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW’20). 1–6. https://doi.org/10.1109/WCNCW48565.2020.9124825
[167]
Yi Zhang, Chih-Yu Wang, and Hung-Yu Wei. 2018. Parked vehicle assisted VFC system with smart parking: An auction approach. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’18). 1–7.
[168]
J. Zhao, N. Cao, Z. Wen, Y. Song, Y. Lin, and C. Collins. 2014. FluxFlow: Visual analysis of anomalous information spreading on social media. IEEE Trans. Visual. Comput. Graph. 20, 12 (2014), 1773–1782.
[169]
K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen. 2015. An SMDP-based resource allocation in vehicular cloud computing systems. IEEE Trans. Industr. Electron. 62, 12 (Dec. 2015), 7920–7928.
[170]
Hong Zhong, Lei Pan, Qingyang Zhang, and Jie Cui. 2019. A new message authentication scheme for multiple devices in intelligent connected vehicles based on edge computing. IEEE Access 7 (2019), 108211–108222.
[171]
Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez. 2019. Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach. IEEE Trans. Vehic. Technol. 68, 4 (2019), 3113–3125.
[172]
Chao Zhu, Giancarlo Pastor, Yu Xiao, Yong Li, and Antti Ylae-Jaeaeski. 2018. Fog following me: Latency and quality balanced task allocation in vehicular fog computing. In Proceedings of the 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON’18). 1–9.
[173]
Chao Zhu, Jin Tao, Giancarlo Pastor, Yu Xiao, Yusheng Ji, Quan Zhou, Yong Li, and Antti Ylä-Jääski. 2018. Folo: Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet Things J. 6, 3 (2018), 4150–4161.

Cited By

View all
  • (2025)Edge computing in Internet of Vehicles: A federated learning method based on Stackelberg dynamic gameInformation Sciences10.1016/j.ins.2024.121452689(121452)Online publication date: Jan-2025
  • (2025)VEC-Sim: A simulation platform for evaluating service caching and computation offloading policies in Vehicular Edge NetworksComputer Networks10.1016/j.comnet.2024.110985257(110985)Online publication date: Feb-2025
  • (2025)A novel niching genetic algorithm with heterosis for edge server placementCluster Computing10.1007/s10586-024-04747-228:1Online publication date: 1-Feb-2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 55, Issue 1
January 2023
860 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3492451
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 November 2021
Accepted: 01 August 2021
Revised: 01 August 2021
Received: 01 November 2020
Published in CSUR Volume 55, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Vehicular edge computer
  2. resource management
  3. security
  4. architecture

Qualifiers

  • Survey
  • Refereed

Funding Sources

  • Brazil’s São Paulo State Research Foundation (FAPESP)
  • Canada’s NSERC Discovery

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,050
  • Downloads (Last 6 weeks)132
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Edge computing in Internet of Vehicles: A federated learning method based on Stackelberg dynamic gameInformation Sciences10.1016/j.ins.2024.121452689(121452)Online publication date: Jan-2025
  • (2025)VEC-Sim: A simulation platform for evaluating service caching and computation offloading policies in Vehicular Edge NetworksComputer Networks10.1016/j.comnet.2024.110985257(110985)Online publication date: Feb-2025
  • (2025)A novel niching genetic algorithm with heterosis for edge server placementCluster Computing10.1007/s10586-024-04747-228:1Online publication date: 1-Feb-2025
  • (2024)Edge Computing Empowering Distributed Computing at the EdgeEmerging Trends in Cloud Computing Analytics, Scalability, and Service Models10.4018/979-8-3693-0900-1.ch003(67-83)Online publication date: 25-Jan-2024
  • (2024)Cost-Efficient Vehicular Edge Computing Deployment for Mobile Air Pollution Monitoring2024 IEEE Wireless Communications and Networking Conference (WCNC)10.1109/WCNC57260.2024.10570558(1-6)Online publication date: 21-Apr-2024
  • (2024)Edge-Based Control of Multi-PlatoonsIEEE Transactions on Vehicular Technology10.1109/TVT.2024.340158473:10(15407-15423)Online publication date: Oct-2024
  • (2024)Optimizing Task Offloading and Resource Allocation in Vehicular Edge Computing Based on Heterogeneous Cellular NetworksIEEE Transactions on Vehicular Technology10.1109/TVT.2023.334536473:5(7175-7187)Online publication date: May-2024
  • (2024)Multi-Agent Reinforcement Learning-Based Trading Decision-Making in Platooning-Assisted Vehicular NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2023.334202032:3(2143-2158)Online publication date: Jun-2024
  • (2024)Lyapunov-Guided Offloading Optimization Based on Soft Actor-Critic for ISAC-Aided Internet of VehiclesIEEE Transactions on Mobile Computing10.1109/TMC.2024.344535023:12(14708-14721)Online publication date: Dec-2024
  • (2024)Clouds on the Road: A Software-Defined Fog Computing Framework for Intelligent Resource Management in Vehicular Ad-Hoc NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2024.341901623:12(12778-12792)Online publication date: Dec-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media