[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Hierarchical RLE level set: A compact and versatile deformable surface representation

Published: 01 January 2006 Publication History

Abstract

This article introduces the Hierarchical Run-Length Encoded (H-RLE) Level Set data structure. This novel data structure combines the best features of the DT-Grid (of Nielsen and Museth [2004]) and the RLE Sparse Level Set (of Houston et al. [2004]) to provide both optimal efficiency and extreme versatility. In brief, the H-RLE level set employs an RLE in a dimensionally recursive fashion. The RLE scheme allows the compact storage of sequential nonnarrowband regions while the dimensionally recursive encoding along each axis efficiently compacts nonnarrowband planes and volumes. Consequently, this new structure can store and process level sets with effective voxel resolutions exceeding 5000 × 3000 × 3000 (45 billion voxels) on commodity PCs with only 1 GB of memory. This article, besides introducing the H-RLE level set data structure and its efficient core algorithms, also describes numerous applications that have benefited from our use of this structure: our unified implicit object representation, efficient and robust mesh to level set conversion, rapid ray tracing, level set metamorphosis, collision detection, and fully sparse fluid simulation (including RLE vector and matrix representations.) Our comparisons of the popular octree level set and Peng level set structures to the H-RLE level set indicate that the latter is superior in both narrowband sequential access speed and overall memory usage.

References

[1]
Adalsteinsson, D. and Sethian, J. A. 1995. A fast level set method for propagating interfaces. J. Computat. Phys. 118, 2, 269--277.
[2]
Batty, C. and Houston, B. 2005. The visual simulation of wispy smoke. In Proceedings of the SIGGRAPH 2005 on Sketches & Applications. ACM Press, New York, NY.
[3]
Breen, D., Fedkiw, R., Museth, K., Osher, S., Sapiro, G., and Whitaker, R. 2004. Level Sets and PDE Methods for Computer Graphics. ACM SIGGRAPH '04 COURSE #27. ACM SIGGRAPH, Los Angeles, CA. ISBN 1-58113-950-X.
[4]
Breen, D. E. and Whitaker, R. T. 2001. A level-set approach for the metamorphosis of solid models. IEEE Trans. Visual. Comput. Graph. 7, 2, 173--192.
[5]
Bridson, R. 2003. Computational aspects of dynamic surfaces. dissertation. Stanford University, Stanford, CA.
[6]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 28--36.
[7]
Carlson, M. 2004. Rigid, melting and flowing fluid. Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
[8]
Curless, B. and Levoy, M. 1996. A volumetric method for building complex models from range images. In Computer Graphics 30. Annual Conference Series. 303--312.
[9]
de Araujo, B. R. and Jorge, J. A. P. 2004. Curvature dependent polygonization of implicit surfaces. In Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'04). IEEE, Computer Society Press, Los Alamitos, CA. 266--273.
[10]
Enright, D., Losasso, F., and Fedkiw, R. 2004. A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479--490.
[11]
Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744.
[12]
Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH '01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 23--30.
[13]
Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. 2000. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of SIGGRAPH 2000. Computer Graphics Proceedings, Annual Conference Series. ACM Press, New York, NY/Addison Wesley Longman, Reading, MA, 249--254.
[14]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468.
[15]
Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22, 3, 871-- 878.
[16]
Houston, B., Bond, C., and Wiebe, M. 2003. A unified approach for modeling complex occlusions in fluid simulations. In Proceedings of the SIGGRAPH 2003 on Sketches & Applications. ACM Press, New York, NY.
[17]
Houston, B., Nielsen, M. B., Batty, C., Nilsson, O., and Museth, K. 2005. Gigantic deformable surfaces. In Proceedings of the SIGGRAPH 2005 on Sketches & Applications. ACM Press, New York, NY.
[18]
Houston, B., Wiebe, M., and Batty, C. 2004. RLE sparse level sets. In Proceedings of the SIGGRAPH 2004 on Sketches & Applications. ACM Press, New York, NY.
[19]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, NY, 131--140.
[20]
Ju, T. 2004. Robust repair of polygonal models. ACM Trans. Graph. 23, 3, 888--895.
[21]
LeVeque, R. 1996. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627--665.
[22]
Liu, X., Osher, S., and Chan, T. 1994. Weighted essentially nonoscillatory schemes. J. Comput. Physat. 115, 200--212.
[23]
Losasso, F., Fedkiw, R., and Osher, S. 2005. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids. In Press.
[24]
Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457--462.
[25]
Mauch, S. 2000. A fast algorithm for computing the closest point and distance transform. Go online to http://www.acm.caltech.edu/seanm/software/cpt/cpt.pdf.
[26]
Museth, K., Breen, D. E., Whitaker, R. T., and Barr, A. H. 2002. Level set surface editing operators. ACM Trans. Graph. 21, 3, 330--338.
[27]
Nielsen, M. B. and Museth, K. 2006. Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26, 1, 1--39.
[28]
Osher, S. and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Computat. Phys. 79, 12--49.
[29]
Osher, S. and Shu, C. 1991. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Num. Anal. 28, 907--922.
[30]
Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999. A PDE-based fast local level set method. J. Computat. Phys. 155, 2, 410--438.
[31]
Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press, New York, NY, 193--202.
[32]
Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proceedings of the National Academy of Sciences of the USA 93, 4 (Feb.), 1591--1595.
[33]
Shah, M., Cohen, J. M., Patel, S., Lee, P., and Pighin, F. 2004. Extended Galilean invariance for adaptive fluid simulation. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press, New York, NY, 213--221.
[34]
Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the agonizing pain. Go online to http://www.cs.cmu.edu/quake-papers/painless-conjugate-gradient.pdf.
[35]
Shu, C. and Osher, S. 1988. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Computat. Phys. 77, 439--471.
[36]
Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH 99. Computer Graphics Proceedings, Annual Conference Series. 121--128.
[37]
Strain, J. 1999. Tree methods for moving interfaces. J. Computat. Phys. 151, 2, 616--648.
[38]
Whitaker, R. T. 1998. A level-set approach to 3d reconstruction from range data. Int. J. Comput. Vision 29, 3, 203--231.
[39]
Wiebe, M. and Houston, B. 2004. The Tar Monster: Creating a character with fluid simulation. In Proceedings of the SIGGRAPH 2004 on Sketches & Applications. ACM Press, New York, NY.
[40]
Yngve, G. and Turk, G. 2002. Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Visual. Comput. Graph. 8, 4, 346--359.

Cited By

View all
  • (2024)Voxel-Based Navigation: A Systematic Review of Techniques, Applications, and ChallengesISPRS International Journal of Geo-Information10.3390/ijgi1312046113:12(461)Online publication date: 19-Dec-2024
  • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
  • (2024)NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural NetworksACM Transactions on Graphics10.1145/364181743:2(1-21)Online publication date: 23-Jan-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 25, Issue 1
January 2006
175 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1122501
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2006
Published in TOG Volume 25, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Level set methods
  2. adaptive distance fields
  3. computational fluid dynamics
  4. deformable surfaces
  5. geometric modeling
  6. implicit surfaces
  7. mesh scan conversion
  8. morphology
  9. shape

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)6
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Voxel-Based Navigation: A Systematic Review of Techniques, Applications, and ChallengesISPRS International Journal of Geo-Information10.3390/ijgi1312046113:12(461)Online publication date: 19-Dec-2024
  • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
  • (2024)NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural NetworksACM Transactions on Graphics10.1145/364181743:2(1-21)Online publication date: 23-Jan-2024
  • (2023)Unified Framework for Real-Time Fluid Simulation in Virtual Rotator Cuff Arthroscopic Skill Trainer (ViRCAST)2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE)10.1109/BIBE60311.2023.00063(346-353)Online publication date: 4-Dec-2023
  • (2022)A clebsch method for free-surface vortical flow simulationACM Transactions on Graphics10.1145/3528223.353015041:4(1-13)Online publication date: 22-Jul-2022
  • (2022)Unified many-worlds browsing of arbitrary physics-based animationsACM Transactions on Graphics10.1145/3528223.353008241:4(1-15)Online publication date: 22-Jul-2022
  • (2021)Voxelisation Algorithms and Data Structures: A ReviewSensors10.3390/s2124824121:24(8241)Online publication date: 9-Dec-2021
  • (2021)Research Progress of Solid Modeling TechnologyComputer Science and Application10.12677/CSA.2021.11411211:04(1089-1097)Online publication date: 2021
  • (2021)QuanTaichiACM Transactions on Graphics10.1145/3450626.345967140:4(1-16)Online publication date: 19-Jul-2021
  • (2021)A Real-Time Sculpting and Terrain Generation System for Interactive Content CreationIEEE Access10.1109/ACCESS.2021.31054179(114914-114928)Online publication date: 2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media