[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A semi-Lagrangian contouring method for fluid simulation

Published: 01 January 2006 Publication History

Abstract

In this article, we present a semi-Lagrangian surface tracking method for use with fluid simulations. Our method maintains an explicit polygonal mesh that defines the surface, and an octree data structure that provides both a spatial index for the mesh and a means for efficiently approximating the signed distance to the surface. At each timestep, a new surface is constructed by extracting the zero set of an advected signed-distance function. Semi-Lagrangian backward path tracing is used to advect the signed-distance function. One of the primary advantages of this formulation is that it enables tracking of surface characteristics, such as color or texture coordinates, at negligible additional cost. We include several examples demonstrating that the method can be effectively used as part of a fluid simulation to animate complex and interesting fluid behaviors.

References

[1]
Arikan, O. 2005. Pixie: Photorealistic renderer. Go online to http://www.cs.utexas.edu/~okan/Pixie/pixie.htm.
[2]
Bærentzen, J. A. and Aanæs, H. 2002. Computing discrete signed distance fields from triangle meshes. Tech. rep. Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.
[3]
Bærentzen, J. A. and Christensen, N. J. 2002. Interactive modelling of shapes using the level-set method. Int. J. Shape Model. 8, 2, 79--97.
[4]
Bloomenthal, J. 1994. An implicit surface polygonizer. In Graphics Gems IV. Academic Press Professional, Inc., San Diego, CA, 324--349.
[5]
Boissonnat, J. D. and Oudot, S. 2003. Provably good surface sampling and approximation. In SGP '03: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Eurographics Association, Aire-la-Ville, Switzerland, 9--18.
[6]
Cani, M.-P. and Desbrun, M. 1997. Animation of deformable models using implicit surfaces. IEEE Trans. Visual. Comput. Graph. 3, 1 (Jan.), 39--50.
[7]
Carlson, M., Mucha, P. J., R. Brooks Van Horn, I., and Turk, G. 2002. Melting and flowing. In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press, New York, NY, 167--174.
[8]
Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377--384.
[9]
Courant, R., Isaacson, E., and Rees, M. 1952. On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math 5, 243--249.
[10]
Desbrun, M. and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of Computer Animation and Simulation 1996. 61--76.
[11]
Desbrun, M. and Gascuel, M.-P. 1995. Animating soft substances with implicit surfaces. In the Proceedings of SIGGRAPH 95, 287--290.
[12]
Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002a. A hybrid particle level set method for improved interface capturing. J. Computat. Phys. 183, 1, 83--116.
[13]
Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479--490.
[14]
Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002b. Animation and rendering of complex water surfaces. In Proceedings of ACM SIGGRAPH 2002. 736--744.
[15]
Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In the Proceedings of ACM SIGGRAPH 2001. 15--22.
[16]
Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In the Proceedings of ACM SIGGRAPH 2001. 23--30.
[17]
Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. In Proceedings of Graphics Interface 1996. 204--212.
[18]
Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. 2000. Adaptively sampled distance fields: A general representation of shape for computer graphics. In SIGGRAPH '00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY/Addison-Wesley Publishing Co., Reading, MA, 249--254.
[19]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. In Proceedings of ACM SIGGRAPH 2004. 463--468.
[20]
Green, D. and Hatch, D. 1995. Fast polygon-cube intersection testing. In Graphics Gems V. Academic Press Professional, Inc., San Diego, CA, 375--379.
[21]
Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3, 973--981.
[22]
Hilton, A., Stoddart, A. J., Illingworth, J., and Windeatt, T. 1996. Marching triangles: Range image fusion for complex object modelling. In Proceedings of the International Conference on Image Processing. 381--384.
[23]
Hirt, C. W. and Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Computat. Phys. 39, 201--225.
[24]
Hong, J.-M. and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920.
[25]
Houston, B., Nielsen, M. B., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, xx--xx.
[26]
Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contouring of hermite data. In SIGGRAPH '02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 339--346.
[27]
LeVeque, R. J. 1990. Numerical Methods for Conservation Laws. Birkhauser-Verlag, Basel, Switzerland.
[28]
Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH '87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 163--169.
[29]
Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In Proceedings of ACM SIGGRAPH 2004. 457--462.
[30]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In ACM SIGGRAPH 2003 Symposium on Computer Animation. 154--159.
[31]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation.
[32]
Nielsen, M. B. and Museth, K. 2006. Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26, 1, 1--39.
[33]
Osher, S. and Fedkiw, R. 2003. The Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, New York, NY.
[34]
Osher, S. and Sethian, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Computat. Phys. 79, 12--49.
[35]
Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964.
[36]
Poston, T., Wong, T.-T., and Heng, P.-A. 1998. Multiresolution isosurface extraction with adaptive skeleton climbing. Comput. Graph. For. 17, 3 (Sept.), 137--148.
[37]
Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. Comput. Graph. For. 22, 3 (Sept.), 401--410.
[38]
Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. ACM Press, New York, NY, 193--202.
[39]
Samet, H. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley Longman Publishing Co., Inc., Reading, MA.
[40]
Schneider, P. J. and Eberly, D. H. 2002. Geometric Tools for Computer Graphics, 1st ed. Morgan Kaufmann, San Francisco, CA.
[41]
Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. USA 93, 4 (Feb.), 1591--1595.
[42]
Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods, 2nd ed. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge, U.K.
[43]
Shekhar, R., Fayyad, E., Yagel, R., and Cornhill, J. F. 1996. Octree-based decimation of marching cubes surfaces. In VIS '96: Proceedings of the 7th conference on Visualization '96. IEEE Computer Society Press, Los Alamitos, CA, 335ff.
[44]
Shu, R., Chen, Z., and Kankanhalli, M. S. 1995. Adaptive marching cubes. Vis. Comput. 11, 202--217.
[45]
Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH 99. 121--128.
[46]
Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-D. 1999. Animating lava flows. In Proceedings of Graphics Interface 99. 203--210.
[47]
Strain, J. A. 1999a. Fast tree-based redistancing for level set computations. J. Computat. Phys. 152, 2 (July), 648--666.
[48]
Strain, J. A. 1999b. Semi-Lagrangian methods for level set equations. J. Computat. Phys. 151, 2 (May), 498--533.
[49]
Strain, J. A. 1999c. Tree methods for moving interfaces. J. Computat. Phys. 151, 2 (May), 616--648.
[50]
Strain, J. A. 2000. A fast modular semi-Lagrangian method for moving interfaces. J. Computat. Phys. 161, 2 (July), 512-- 536.
[51]
Strain, J. A. 2001. A fast semi-Lagrangian contouring method for moving interfaces. J. Computat. Phys. 169, 1 (May), 1--22.
[52]
Sussman, M. and Puckett, E. G. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Physat. 162, 2, 301--337.
[53]
Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In Proceedings of Graphics Interface 1989. 219--226.
[54]
Turk, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In SIGGRAPH '91: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 289--298.
[55]
Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. 24, 3, 921--929.
[56]
Witkin, A. and Kass, M. 1991. Reaction-diffusion textures. In SIGGRAPH '91: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 299--308.
[57]
Wyvill, G., McPheeters, C., and Wyvill, B. 1986. Data structure for soft objects. Vis. Comput. 2, 4, 227--234.
[58]
Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965--972.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 25, Issue 1
January 2006
175 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1122501
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2006
Published in TOG Volume 25, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Natural phenomena
  2. computational fluid dynamics
  3. level-set methods
  4. physically based animation
  5. semi-Lagrangian contouring
  6. surface tracking

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)5
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural NetworksACM Transactions on Graphics10.1145/364181743:2(1-21)Online publication date: 23-Jan-2024
  • (2024)Neural Monte Carlo Fluid SimulationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657438(1-11)Online publication date: 13-Jul-2024
  • (2023)Tiled Characteristic Maps for Tracking Detailed Liquid SurfacesComputer Graphics Forum10.1111/cgf.1463841:8(231-242)Online publication date: 20-Mar-2023
  • (2022)Virtual water wave simulation with multiple wavenumbersVirtual Reality10.1007/s10055-022-00729-027:2(1221-1231)Online publication date: 7-Dec-2022
  • (2021)Accelerated Smoke Simulation by Super-Resolution With Deep Learning on Downscaled and Binarized SpaceIEEE Access10.1109/ACCESS.2021.30959049(98615-98629)Online publication date: 2021
  • (2020)Efficient preservation and breakup of liquid sheets using screen-projected particlesPLOS ONE10.1371/journal.pone.022759015:2(e0227590)Online publication date: 5-Feb-2020
  • (2020)An extended cut-cell method for sub-grid liquids tracking with surface tensionACM Transactions on Graphics10.1145/3414685.341785939:6(1-13)Online publication date: 27-Nov-2020
  • (2019)Simulation and Visualization of Ductile Fracture with the Material Point MethodProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/33402592:2(1-20)Online publication date: 26-Jul-2019
  • (2019)A Semi-Explicit Surface Tracking Mechanism for Multi-Phase Immiscible LiquidsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286428325:10(2873-2885)Online publication date: 1-Oct-2019
  • (2019)A semi-Lagrangian approach for numerical simulation of coupled Burgers’ equationsCommunications in Nonlinear Science and Numerical Simulation10.1016/j.cnsns.2018.09.00769(31-44)Online publication date: Apr-2019
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media