[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 1. Input data and calculation method

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Advances in attacking the problem of radiative transfer in the near infrared (NIR) bands of CO2 and CO under nonlocal thermodynamic equilibrium (NLTE) conditions depend on the accuracy of taking into account the radiation processes and inelastic collisions of CO2 and CO molecules. The focus of the paper is to substantially improve the physical model of the problem and update the calculation method. It is the first time the surface albedo is introduced into the problem of the molecular emission under NLTE conditions. The values of the rate constants for inelastic molecular collisions and their temperature dependences have been radically updated. In some cases, since laboratory measurements of these constants are lacking, different versions are provided for them. The relative abundance of CO2 and CO isotopologues is based on the ratios of isotope abundances for the elements C and O obtained from the measurements in the atmosphere of Mars. The intensity of extraterrestrial solar NIR radiation is specified on the base of the high-accuracy ground-based measurements. In the method for calculating the populations of vibrational states, we pioneer in completely taking into account the overlapping of spectral lines in the NIR bands of CO2 and CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, D.C., Scragg, T., and Simpson, C.J.S.M., Low temperature fluorescence studies of the deactivation of the bend-stretch manifold of CO2, Chem. Phys., 1980, vol. 51, pp. 279–298.

    Article  ADS  Google Scholar 

  • Alwahabi, Z.T., Zetterberg, J., Li, Z.S., and Aldén, M., Vibrational relaxation of CO2(1201) by argon, Chem. Phys., 2009, vol. 359, pp. 71–76. doi 10.1016/j.chemphys.2009.03.008

    Article  ADS  Google Scholar 

  • Billebaud, F., Crovisier, J., Lellouch, E., Encrenaz, T., and Maillard, J.P., High-resolution infrared spectrum of CO on Mars: evidence for emission lines, Planet. Space Sci., 1991, vol. 39, pp. 213–218.

    Article  ADS  Google Scholar 

  • Bougher, S.W., Pawlowski, D., Bell, J.M., Nelli, S., McDunn, T., Murphy, J.R., Chizek, M., and Ridley, A., Mars Global Ionosphere-Thermosphere Model: solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. E, 2015, vol. 120, pp. 311–342. doi 10.1029/2014JE004715

    Article  ADS  Google Scholar 

  • Brechignac, Ph., Near-resonant V-V transfer rates for highlying vibrational states of CO, Chem. Phys., 1978, vol. 34, pp. 119–134.

    Article  ADS  Google Scholar 

  • Buchwald, M.I. and Wolga, G.J., Vibrational relaxation of CO2(001) by atoms, J. Phys., Chem., 1975, vol. 62, pp. 2828–2832.

    Article  Google Scholar 

  • Burak, I., Noter, Y., and Szoke, A., Vibration-vibration energy transfer in the υ3 mode of CO2, IEEE J. Quant. Elect., 1973, vol. 9, pp. 541–544.

    Article  ADS  Google Scholar 

  • Castle, K.J., Black, L.A., Simione, M.W., and Dodd, J.A., Vibrational relaxation of CO22) by O in the 142–490 K temperature range, J. Geophys. Res. A, 2012, vol. 117, 04310. doi 10.1029/2012JA017519

    ADS  Google Scholar 

  • Cecchini, M.R. and Castle, K.J., Vibrational relaxation of 13CO22) by atomic oxygen, Chem. Phys. Lett., 2015, vol. 638, pp. 149–152. doi 10.1016/j.cplett.2015.08.051

    Article  ADS  Google Scholar 

  • Dang, C., Reid, J., and Garside, B.K., Dynamics of the CO2 lower laser levels as measured with tunable diode laser, Appl. Phys. B, 1983, vol. 31, pp. 163–172.

    Article  ADS  Google Scholar 

  • de Lara-Castells, M.P., Hernández, M.I., Delgado-Barrio, G., Villarreal, P., and López-Puertas, M., Key role of spinorbit effects in the relaxation of CO2(010) by thermal collisions with O(3Pj), Mol. Phys., 2007, vol. 105, pp. 1171–1181. doi 10.1080/00268970701244809

    Article  ADS  Google Scholar 

  • Deming, D. and Mumma, M.J., Modeling of the 10-μm natural laser emission from the mesospheres of Mars and Venus, Icarus, 1983, vol. 55, pp. 356–368.

    Article  ADS  Google Scholar 

  • Doyennete, L., Margottin-Maclou, M., Chakroun, A., Gueguen, H., and Henry, L., Vibrational energy transfer from the (0001) level of 14N2O and 12CO2 to the (m,nl,1) levels of these molecules and of their isotopic species, J. Chem. Phys., 1975, vol. 62, pp. 440–447.

    Article  ADS  Google Scholar 

  • Erard, S., A spectro-photometric model of Mars in the near-infrared, Geophys. Res. Lett., 2001, vol. 28, pp. 1291–1294.

    Article  ADS  Google Scholar 

  • Fedorova, A.A., Korablev, O.I., Bertaux, J.-L., Rodin, A.V., Montmessin, F., Belyaev, D.A., and Reberac, A., Solar infrared occultation observations by the SPICAM experiment on Mars-Express: Simultaneous measurements of H2O, CO2 and aerosol, Icarus, 2009, vol. 200, pp. 96–117. doi 10.1016/j.icarus.2008.11.006

    Article  ADS  Google Scholar 

  • Fedorova, A.A., Montmessin, F., Rodin, A.V., Korablev, O.I., Maattanen, A., Maltagliati, L., and Bertaux, J.-L., Evidence for a bimodal size distribution for the suspended aerosol particles on Mars, Icarus, 2014, vol. 231, pp. 239–260. doi 10.1016/j.icarus.2013.12.015

    Article  ADS  Google Scholar 

  • Finzi, J. and Moore, B., Relaxation of CO2(1001), CO2(0201), and N2O (1001) vibrational levels by nearresonant V→V energy transfer, J. Chem. Phys., 1975, vol. 63, pp. 2285–2288.

    Article  ADS  Google Scholar 

  • Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., and Hout, J.-P., Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res. E, 1999, vol. 104, pp. 24155–24175.

    Article  ADS  Google Scholar 

  • Franz, H.B., Trainer, M., Wong, M.H, Mahaffy, P.R., Atreya, S.K., Manning, H.L.K., and Stern, J.C., Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover, Planet. Space Sci., 2015, vol. 109–110, pp. 154–158. doi 10.1016/j.pss.2015.02.014

    Article  Google Scholar 

  • Gilli, G., López-Valverde, M.A., Funke, B., Lόpez-Puertas, M., Drossart, P., Piccioni, G., and Formisano, V., Non-LTE CO limb emission at 4.7 μm in the upper atmosphere of Venus, Mars and Earth: observations and modeling, Planet. Space. Sci., 2011, vol. 59, pp. 1010–1018. doi 10.1016/j.pss.2011.07.023

    Article  ADS  Google Scholar 

  • González-Galindo, F., Forget, F., López-Valverde, M.A., Angelats i Coll, M., and Millour, E., A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures, J. Geophys. Res. E, 2009, vol. 114, 04001. doi 10.1029/2008JE00324

    Article  ADS  Google Scholar 

  • Gordiets, B.F. and Panchenko, V.Ya., Nonequilibrium infrared radiation and the natural laser effect in the atmospheres of Venus and Mars, Cosmic Res., 1983, vol. 21, pp. 725−734.

    Google Scholar 

  • Gower, M.C., Srinivasan, G., and Billman, K.W., Vibrational energy exchange in CO–CO collisions at low temperature, J. Chem. Phys., 1975, vol. 63, pp. 4206–4211.

    Article  ADS  Google Scholar 

  • Hartogh, P., Medvedev, A.S., Kuroda, T., Saito, R., Villanueva, G., Feofilov, A.G., Kutepov, A.A., and Berger, U., Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res. E, 2005, vol. 110, 11008. doi 10.1029/2005JE002498

    Article  ADS  Google Scholar 

  • Henderson, M.C. and Klose, J.Z., Ultrasonic absorption and thermal relaxation in CO2, J. Acoust. Soc. Amer., 1959, vol. 31, pp. 29–33.

    Article  ADS  Google Scholar 

  • Inoue, G. and Tsuchiya, S., Vibration-vibration energy transfer of CO2(0001) with N2 and CO at low temperatures, J. Phys. Soc. Jpn., 1975, vol. 39, pp. 479–486.

    Article  ADS  Google Scholar 

  • Khvorostovskaya, L.E., Potekhin, I.Yu., Shved, G.M., Ogibalov, V.P., and Uzyukova, T.V., Measurement of the rate constant for quenching CO2(0110) by atomic oxygen at low temperatures: Reassessment of the rate of cooling by the CO2 15-μm emission in the lower thermosphere, Izv. Atmos. Ocean. Phys., 2002, vol. 38, pp. 613–624.

    Google Scholar 

  • Krasnopolsky, V.A., Photochemistry of the Martian atmosphere: seasonal, latitudinal, and diurnal variations, Icarus, 2006, vol. 185, pp. 153–170. doi 10.1016/j.icarus.2006.06.003

    Article  ADS  Google Scholar 

  • Krasnopolsky, V.A., Observations of the CO dayglow at 4.7 μm on Mars: variations of temperature and CO mixing ratio at 50 km, Icarus, 2014, vol. 228, pp. 189–196. doi 10.1016/j.icarus.2013.10.008

    Article  ADS  Google Scholar 

  • Kutepov, A.A., Gusev, O.A., and Ogibalov, V.P., Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of the accelerated lambda iteration, J. Quant. Spectrosc. Radiat. Transf., 1998, vol. 60, pp. 199–220.

    Article  ADS  Google Scholar 

  • Lepoutre, F., Louis, G., and Manceau, H., Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method, Chem. Phys. Lett., 1977, vol. 48, pp. 509–515.

    Article  ADS  Google Scholar 

  • Lewittes, M.E., Davis, C.C., and McFarlane, R.A., Vibrational deactivation of CO(υ =1) by oxygen atoms, J. Chem. Phys., 1978, vol. 69, pp. 1952–1957.

    Article  ADS  Google Scholar 

  • López-Puertas, M. and Taylor, F.W., Non-LTE Radiative Transfer in the Atmosphere, Singapore: World Sci. Publ., 2001.

    Book  Google Scholar 

  • López-Valverde, M.A. and López-Puertas, M., A nonlocal thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 2. Daytime populations of vibrational levels, J. Geophys. Res. E, 1994, vol. 99, pp. 13117–13132.

    Article  Google Scholar 

  • López-Valverde, M.A., López-Puertas, M., López-Moreno, J.J., Formisano, V., Grassi, D., Maturilli, A., Lellouch, E., and Drossart, P., Analysis CO2 non-LTE emissions at 4.3 μm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO, Planet. Space Sci., 2005, vol. 53, pp. 1079–1087. doi 10.1016/j.pss.2005.03.007

    Article  ADS  Google Scholar 

  • López-Valverde, M.A., López-Puertas, M., Funke, B., Gilli, G., Garcia-Comas, M., Drossart, P., Piccioni, G., and Formisano, V., Modeling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets, Planet. Space Sci., 2011a, vol. 59, pp. 988–998. doi 10.1016/j.pss.2010.02.001

    Article  ADS  Google Scholar 

  • López-Valverde, M.A., Sonnabend, G., Sornig, M., and Kroetz, P., Modelling the atmospheric CO2 10-μm non-thermal emission in Mars and Venus at high spectral resolution, Planet. Space Sci., 2011b, vol. 59, pp. 999–1009. doi 10.1016/j.pss.2010.11.011

    Article  ADS  Google Scholar 

  • Lunt, S.L., Wickham-Jones, C.T., and Simpson, C.J.S.M., Rate constants for the deactivation of the 15 μm band of carbon dioxide by the collisions partners CH3F, CO2, N2, Ar and Kr over the temperature range 300 to 150 K, Chem. Phys. Lett., 1985, vol. 115, pp. 60–64.

    Article  ADS  Google Scholar 

  • Maguire, W.C., Pearl, J.C., Smith, M.D., Conrath, B.J., Kutepov, A.A., Kaelberer, M.S., Winter, E., and Christensen, P.R., Observations of high-altitude CO2 hot bands in Mars by the orbiting Thermal Emission Spectrometer, J. Geophys. Res., 2002, no. E9, p. 5063. doi 10.1029/2001JE001516

    Article  ADS  Google Scholar 

  • Mahaffy, P.R., Benna, M., Elrod, M., Yelle, R.V., Bougher, S.W., Stone, S.W., and Jakosky, B.W., Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation, Geophys. Res. Lett., 2015, vol. 42, pp. 8951–8957. doi 10.1002/2015GL065329

    Article  ADS  Google Scholar 

  • McCaffery, A.J., A new approach to molecular collision dynamics, Phys. Chem. Chem. Phys., 2004, vol. 8, pp. 1637–1657.

    Article  Google Scholar 

  • Menang, K.P., Coleman, M.D., Gardiner, T.D., Ptashnik, I.V., and Shine, K.P., A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements, J. Geophys. Res. D, 2013, vol. 118, pp. 5319–5331. doi 10.1002/jgrd.50425

    ADS  Google Scholar 

  • Nevdakh, V.V., Orlov, L.N., and Leshenyuk, N.S., Temperature dependence of rate constants for vibrational relaxation of 0001 level of CO2 molecule in binary mixtures, Zh. Prikl. Spektrosk., 2003, vol. 70, no. 2, pp. 246–253.

    Google Scholar 

  • Nier, A.O. and McElroy, M.B., Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 1977, vol. 82, pp. 4341–4349.

    Article  ADS  Google Scholar 

  • Ogibalov, V.P. and Shved, G.M., An improved optical model for the non-LTE problem for the CO2 molecule in the atmosphere of Mars: nighttime populations of vibrational states and the rate of radiative cooling of the atmosphere, Solar Syst. Res., 2003, vol. 37, pp. 20–30.

    Article  ADS  Google Scholar 

  • Orr, B.J. and Smith, I.W.M., Collision-induced vibrational energy transfer in small polyatomic molecules, J. Phys. Chem., 1987, vol. 91, pp. 6106–6119.

    Article  Google Scholar 

  • Powell, H.T., Vibrational relaxation of carbon monoxide using a pulse discharge. II. T = 100, 300, 500 K, J. Chem. Phys., 1975, vol. 63, pp. 2635–2645.

    Article  ADS  Google Scholar 

  • Rosser, W.A., Wood, A.D., and Gerry, E.T., Deactivation of vibrationally excited carbon dioxide (ν3) by collisions with carbon dioxide or with nitrogen, J. Chem. Phys., 1969, vol. 50, pp. 4996–5008.

    Article  ADS  Google Scholar 

  • Rothman, L.S., Gordon, I.E., Babikov, Y., and 46 coauthors, The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 2013, vol. 130, pp. 4–50. http://dx.doi.org/10.1016/j.jqsrt.2013.07.002

    Article  ADS  Google Scholar 

  • Shved, G.M., Stepanova, G.I., and Kutepov, A.A., Transfer of 4.3 μm CO2 radiation on departure from local thermodynamic equilibrium in the atmosphere of the Earth, Izv. Atmos. Ocean. Phys., 1978, vol. 14, pp. 589–596.

    Google Scholar 

  • Shved, G.M., Kutepov, A.A., and Ogibalov, V.P., Nonlocal thermodynamic equilibrium in CO2 in the middle atmosphere. I. Populations of the ν3 mode manifold states, J. Atmos. Solar-Terr. Phys., 1998, vol. 60, pp. 289–314.

    Article  ADS  Google Scholar 

  • Shved, G.M., On the abundances of carbon dioxide isotopologues in the atmospheres of Mars and Earth, Solar Syst. Res., 2016, vol. 50, pp. 161–163.

    Article  ADS  Google Scholar 

  • Siddles, R.M., Wilson, G.J., and Simpson, C.J.S.M., The vibrational deactivation of the (0001) and (0110) modes of CO2 measured down to 140 K, Chem. Phys., 1994, vol. 189, pp. 779–791.

    Article  ADS  Google Scholar 

  • Simpson, C.J.S.M. and Chandler, T.R.D., A shock tube study of vibrational relaxation in pure CO2 and mixtures CO2 with the inert gases, nitrogen, deuterium and hydrogen, Proc. Roy. Soc. Lond. A, 1970, vol. 317, pp. 265–277.

    Article  ADS  Google Scholar 

  • Smith, M.D., Wolff, M.J., Clancy, R.T., Kleinböhl, A., and Murchie, S.L., Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations, J. Geophys. Res. E, 2013, vol. 118, pp. 321–334. doi 10.1002/jgre.20047

    Article  ADS  Google Scholar 

  • Starr, D.F. and Hancock, J.K., Vibrational energy transfer in CO2–CO mixtures from 163 to 406 K, J. Chem. Phys., 1975, vol. 63, pp. 4730–4734.

    Article  ADS  Google Scholar 

  • Stepanova, G.I. and Shved, G.M., Radiation transfer in the 4.3 μm CO2 band and the 4.7 μm CO band in the atmospheres of Venus and Mars with violation of LTE: Populations of vibrational states, Sov. Astron., 1985, vol. 29, pp. 422–428.

    ADS  Google Scholar 

  • Stephenson, J.C., Wood, R.E., and Moore, C.B., Nearresonant energy transfer between infrared-active vibrations, J. Chem. Phys., 1968, vol. 48, pp. 4790–4791.

    Article  ADS  Google Scholar 

  • Stephenson, J.C. and Moore, C.B., Near-resonant vibration → vibration energy transfer: CO23 = 1) + M → CO21 = 1) + M* + ΔE, J. Chem. Phys., 1970, vol. 52, pp. 2333–2340.

    Article  ADS  Google Scholar 

  • Stephenson, J.C. and Moore, B., Temperature dependence of nearly resonant vibration-vibration energy transfer in CO2 mixtures, J. Chem. Phys., 1972, vol. 56, pp. 1295–1308.

    Article  ADS  Google Scholar 

  • Stephenson, J.C. and Mosburg, E.R., Vibrational energy transfer in CO from 100 to 300 K, J. Chem. Phys., 1974, vol. 60, pp. 3562–3566.

    Article  ADS  Google Scholar 

  • Taine, J. and Lepoutre, F., A photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO, Chem. Phys. Lett., 1979, vol. 65, pp. 554–558.

    Article  ADS  Google Scholar 

  • Taine, J. and Lepoutre, F., Determination of energy transferred to rotation-translation in deactivation of CO2(0001) by N2 and O2 and of CO(1) by CO2, Chem. Phys. Lett., 1980, vol. 75, pp. 448–451.

    Article  ADS  Google Scholar 

  • Vargin, A.N., Gogokhiya, V.V., Konyukhov, V.K., Koval’, A.K., Lukovnikov, A.I., and Pasynkova, L.M., Experimental determination of the relaxation channels for vibration-excited CO2 molecules, Kvant. Elektron., 1980, vol. 7, no. 7, pp. 1492–1498.

    ADS  Google Scholar 

  • Wang, B., Gu, Y., and Kong, F., Multilevel vibrationalvibrational (V–V) energy transfer from CO(υ) to O2 and CO2, J. Phys. Chem. A, 1998, vol. 102, pp. 9367–9371.

    Article  Google Scholar 

  • Webster, C.R., Mahaffy, P.R., Flesch, G.J., Niles, P.B., Jones, J.H., Leshin, L.A., Atreya, S.K., Stern, J.C., Christensen, L.E., Owen, T., Franz, H., Pepin, R.O., Steele, A., and the MSL Science Team, Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere, Science, 2013, vol. 341, pp. 260–263. doi 10.1126/science1237961

    Article  ADS  Google Scholar 

  • Wilson, G.J., Turnidge, M.L., Reid, J.P., and Simpson, C.J.S.M., Vibrational energy transfer between isotopes of CO and isotopes of CO2 in the gas phase and in liquid Kr solution, J. Chem. Phys., 1995, vol. 102, pp. 1192–1198.

    Article  ADS  Google Scholar 

  • Winter, T.G., Relaxation time in CO2 as a function of H2 and D2 concentration at several temperatures, J. Chem. Phys., 1963, vol. 38, pp. 2761–2765.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Shved.

Additional information

Original Russian Text © V.P. Ogibalov, G.M. Shved, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 5, pp. 336–348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogibalov, V.P., Shved, G.M. An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 1. Input data and calculation method. Sol Syst Res 50, 316–328 (2016). https://doi.org/10.1134/S003809461605004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809461605004X

Keywords

Navigation