Abstract
Advances in attacking the problem of radiative transfer in the near infrared (NIR) bands of CO2 and CO under nonlocal thermodynamic equilibrium (NLTE) conditions depend on the accuracy of taking into account the radiation processes and inelastic collisions of CO2 and CO molecules. The focus of the paper is to substantially improve the physical model of the problem and update the calculation method. It is the first time the surface albedo is introduced into the problem of the molecular emission under NLTE conditions. The values of the rate constants for inelastic molecular collisions and their temperature dependences have been radically updated. In some cases, since laboratory measurements of these constants are lacking, different versions are provided for them. The relative abundance of CO2 and CO isotopologues is based on the ratios of isotope abundances for the elements C and O obtained from the measurements in the atmosphere of Mars. The intensity of extraterrestrial solar NIR radiation is specified on the base of the high-accuracy ground-based measurements. In the method for calculating the populations of vibrational states, we pioneer in completely taking into account the overlapping of spectral lines in the NIR bands of CO2 and CO.
Similar content being viewed by others
References
Allen, D.C., Scragg, T., and Simpson, C.J.S.M., Low temperature fluorescence studies of the deactivation of the bend-stretch manifold of CO2, Chem. Phys., 1980, vol. 51, pp. 279–298.
Alwahabi, Z.T., Zetterberg, J., Li, Z.S., and Aldén, M., Vibrational relaxation of CO2(1201) by argon, Chem. Phys., 2009, vol. 359, pp. 71–76. doi 10.1016/j.chemphys.2009.03.008
Billebaud, F., Crovisier, J., Lellouch, E., Encrenaz, T., and Maillard, J.P., High-resolution infrared spectrum of CO on Mars: evidence for emission lines, Planet. Space Sci., 1991, vol. 39, pp. 213–218.
Bougher, S.W., Pawlowski, D., Bell, J.M., Nelli, S., McDunn, T., Murphy, J.R., Chizek, M., and Ridley, A., Mars Global Ionosphere-Thermosphere Model: solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. E, 2015, vol. 120, pp. 311–342. doi 10.1029/2014JE004715
Brechignac, Ph., Near-resonant V-V transfer rates for highlying vibrational states of CO, Chem. Phys., 1978, vol. 34, pp. 119–134.
Buchwald, M.I. and Wolga, G.J., Vibrational relaxation of CO2(001) by atoms, J. Phys., Chem., 1975, vol. 62, pp. 2828–2832.
Burak, I., Noter, Y., and Szoke, A., Vibration-vibration energy transfer in the υ3 mode of CO2, IEEE J. Quant. Elect., 1973, vol. 9, pp. 541–544.
Castle, K.J., Black, L.A., Simione, M.W., and Dodd, J.A., Vibrational relaxation of CO2(υ2) by O in the 142–490 K temperature range, J. Geophys. Res. A, 2012, vol. 117, 04310. doi 10.1029/2012JA017519
Cecchini, M.R. and Castle, K.J., Vibrational relaxation of 13CO2(υ2) by atomic oxygen, Chem. Phys. Lett., 2015, vol. 638, pp. 149–152. doi 10.1016/j.cplett.2015.08.051
Dang, C., Reid, J., and Garside, B.K., Dynamics of the CO2 lower laser levels as measured with tunable diode laser, Appl. Phys. B, 1983, vol. 31, pp. 163–172.
de Lara-Castells, M.P., Hernández, M.I., Delgado-Barrio, G., Villarreal, P., and López-Puertas, M., Key role of spinorbit effects in the relaxation of CO2(010) by thermal collisions with O(3Pj), Mol. Phys., 2007, vol. 105, pp. 1171–1181. doi 10.1080/00268970701244809
Deming, D. and Mumma, M.J., Modeling of the 10-μm natural laser emission from the mesospheres of Mars and Venus, Icarus, 1983, vol. 55, pp. 356–368.
Doyennete, L., Margottin-Maclou, M., Chakroun, A., Gueguen, H., and Henry, L., Vibrational energy transfer from the (0001) level of 14N2O and 12CO2 to the (m,nl,1) levels of these molecules and of their isotopic species, J. Chem. Phys., 1975, vol. 62, pp. 440–447.
Erard, S., A spectro-photometric model of Mars in the near-infrared, Geophys. Res. Lett., 2001, vol. 28, pp. 1291–1294.
Fedorova, A.A., Korablev, O.I., Bertaux, J.-L., Rodin, A.V., Montmessin, F., Belyaev, D.A., and Reberac, A., Solar infrared occultation observations by the SPICAM experiment on Mars-Express: Simultaneous measurements of H2O, CO2 and aerosol, Icarus, 2009, vol. 200, pp. 96–117. doi 10.1016/j.icarus.2008.11.006
Fedorova, A.A., Montmessin, F., Rodin, A.V., Korablev, O.I., Maattanen, A., Maltagliati, L., and Bertaux, J.-L., Evidence for a bimodal size distribution for the suspended aerosol particles on Mars, Icarus, 2014, vol. 231, pp. 239–260. doi 10.1016/j.icarus.2013.12.015
Finzi, J. and Moore, B., Relaxation of CO2(1001), CO2(0201), and N2O (1001) vibrational levels by nearresonant V→V energy transfer, J. Chem. Phys., 1975, vol. 63, pp. 2285–2288.
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., and Hout, J.-P., Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res. E, 1999, vol. 104, pp. 24155–24175.
Franz, H.B., Trainer, M., Wong, M.H, Mahaffy, P.R., Atreya, S.K., Manning, H.L.K., and Stern, J.C., Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover, Planet. Space Sci., 2015, vol. 109–110, pp. 154–158. doi 10.1016/j.pss.2015.02.014
Gilli, G., López-Valverde, M.A., Funke, B., Lόpez-Puertas, M., Drossart, P., Piccioni, G., and Formisano, V., Non-LTE CO limb emission at 4.7 μm in the upper atmosphere of Venus, Mars and Earth: observations and modeling, Planet. Space. Sci., 2011, vol. 59, pp. 1010–1018. doi 10.1016/j.pss.2011.07.023
González-Galindo, F., Forget, F., López-Valverde, M.A., Angelats i Coll, M., and Millour, E., A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures, J. Geophys. Res. E, 2009, vol. 114, 04001. doi 10.1029/2008JE00324
Gordiets, B.F. and Panchenko, V.Ya., Nonequilibrium infrared radiation and the natural laser effect in the atmospheres of Venus and Mars, Cosmic Res., 1983, vol. 21, pp. 725−734.
Gower, M.C., Srinivasan, G., and Billman, K.W., Vibrational energy exchange in CO–CO collisions at low temperature, J. Chem. Phys., 1975, vol. 63, pp. 4206–4211.
Hartogh, P., Medvedev, A.S., Kuroda, T., Saito, R., Villanueva, G., Feofilov, A.G., Kutepov, A.A., and Berger, U., Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res. E, 2005, vol. 110, 11008. doi 10.1029/2005JE002498
Henderson, M.C. and Klose, J.Z., Ultrasonic absorption and thermal relaxation in CO2, J. Acoust. Soc. Amer., 1959, vol. 31, pp. 29–33.
Inoue, G. and Tsuchiya, S., Vibration-vibration energy transfer of CO2(0001) with N2 and CO at low temperatures, J. Phys. Soc. Jpn., 1975, vol. 39, pp. 479–486.
Khvorostovskaya, L.E., Potekhin, I.Yu., Shved, G.M., Ogibalov, V.P., and Uzyukova, T.V., Measurement of the rate constant for quenching CO2(0110) by atomic oxygen at low temperatures: Reassessment of the rate of cooling by the CO2 15-μm emission in the lower thermosphere, Izv. Atmos. Ocean. Phys., 2002, vol. 38, pp. 613–624.
Krasnopolsky, V.A., Photochemistry of the Martian atmosphere: seasonal, latitudinal, and diurnal variations, Icarus, 2006, vol. 185, pp. 153–170. doi 10.1016/j.icarus.2006.06.003
Krasnopolsky, V.A., Observations of the CO dayglow at 4.7 μm on Mars: variations of temperature and CO mixing ratio at 50 km, Icarus, 2014, vol. 228, pp. 189–196. doi 10.1016/j.icarus.2013.10.008
Kutepov, A.A., Gusev, O.A., and Ogibalov, V.P., Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of the accelerated lambda iteration, J. Quant. Spectrosc. Radiat. Transf., 1998, vol. 60, pp. 199–220.
Lepoutre, F., Louis, G., and Manceau, H., Collisional relaxation in CO2 between 180 K and 400 K measured by the spectrophone method, Chem. Phys. Lett., 1977, vol. 48, pp. 509–515.
Lewittes, M.E., Davis, C.C., and McFarlane, R.A., Vibrational deactivation of CO(υ =1) by oxygen atoms, J. Chem. Phys., 1978, vol. 69, pp. 1952–1957.
López-Puertas, M. and Taylor, F.W., Non-LTE Radiative Transfer in the Atmosphere, Singapore: World Sci. Publ., 2001.
López-Valverde, M.A. and López-Puertas, M., A nonlocal thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 2. Daytime populations of vibrational levels, J. Geophys. Res. E, 1994, vol. 99, pp. 13117–13132.
López-Valverde, M.A., López-Puertas, M., López-Moreno, J.J., Formisano, V., Grassi, D., Maturilli, A., Lellouch, E., and Drossart, P., Analysis CO2 non-LTE emissions at 4.3 μm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO, Planet. Space Sci., 2005, vol. 53, pp. 1079–1087. doi 10.1016/j.pss.2005.03.007
López-Valverde, M.A., López-Puertas, M., Funke, B., Gilli, G., Garcia-Comas, M., Drossart, P., Piccioni, G., and Formisano, V., Modeling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets, Planet. Space Sci., 2011a, vol. 59, pp. 988–998. doi 10.1016/j.pss.2010.02.001
López-Valverde, M.A., Sonnabend, G., Sornig, M., and Kroetz, P., Modelling the atmospheric CO2 10-μm non-thermal emission in Mars and Venus at high spectral resolution, Planet. Space Sci., 2011b, vol. 59, pp. 999–1009. doi 10.1016/j.pss.2010.11.011
Lunt, S.L., Wickham-Jones, C.T., and Simpson, C.J.S.M., Rate constants for the deactivation of the 15 μm band of carbon dioxide by the collisions partners CH3F, CO2, N2, Ar and Kr over the temperature range 300 to 150 K, Chem. Phys. Lett., 1985, vol. 115, pp. 60–64.
Maguire, W.C., Pearl, J.C., Smith, M.D., Conrath, B.J., Kutepov, A.A., Kaelberer, M.S., Winter, E., and Christensen, P.R., Observations of high-altitude CO2 hot bands in Mars by the orbiting Thermal Emission Spectrometer, J. Geophys. Res., 2002, no. E9, p. 5063. doi 10.1029/2001JE001516
Mahaffy, P.R., Benna, M., Elrod, M., Yelle, R.V., Bougher, S.W., Stone, S.W., and Jakosky, B.W., Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation, Geophys. Res. Lett., 2015, vol. 42, pp. 8951–8957. doi 10.1002/2015GL065329
McCaffery, A.J., A new approach to molecular collision dynamics, Phys. Chem. Chem. Phys., 2004, vol. 8, pp. 1637–1657.
Menang, K.P., Coleman, M.D., Gardiner, T.D., Ptashnik, I.V., and Shine, K.P., A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements, J. Geophys. Res. D, 2013, vol. 118, pp. 5319–5331. doi 10.1002/jgrd.50425
Nevdakh, V.V., Orlov, L.N., and Leshenyuk, N.S., Temperature dependence of rate constants for vibrational relaxation of 0001 level of CO2 molecule in binary mixtures, Zh. Prikl. Spektrosk., 2003, vol. 70, no. 2, pp. 246–253.
Nier, A.O. and McElroy, M.B., Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 1977, vol. 82, pp. 4341–4349.
Ogibalov, V.P. and Shved, G.M., An improved optical model for the non-LTE problem for the CO2 molecule in the atmosphere of Mars: nighttime populations of vibrational states and the rate of radiative cooling of the atmosphere, Solar Syst. Res., 2003, vol. 37, pp. 20–30.
Orr, B.J. and Smith, I.W.M., Collision-induced vibrational energy transfer in small polyatomic molecules, J. Phys. Chem., 1987, vol. 91, pp. 6106–6119.
Powell, H.T., Vibrational relaxation of carbon monoxide using a pulse discharge. II. T = 100, 300, 500 K, J. Chem. Phys., 1975, vol. 63, pp. 2635–2645.
Rosser, W.A., Wood, A.D., and Gerry, E.T., Deactivation of vibrationally excited carbon dioxide (ν3) by collisions with carbon dioxide or with nitrogen, J. Chem. Phys., 1969, vol. 50, pp. 4996–5008.
Rothman, L.S., Gordon, I.E., Babikov, Y., and 46 coauthors, The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 2013, vol. 130, pp. 4–50. http://dx.doi.org/10.1016/j.jqsrt.2013.07.002
Shved, G.M., Stepanova, G.I., and Kutepov, A.A., Transfer of 4.3 μm CO2 radiation on departure from local thermodynamic equilibrium in the atmosphere of the Earth, Izv. Atmos. Ocean. Phys., 1978, vol. 14, pp. 589–596.
Shved, G.M., Kutepov, A.A., and Ogibalov, V.P., Nonlocal thermodynamic equilibrium in CO2 in the middle atmosphere. I. Populations of the ν3 mode manifold states, J. Atmos. Solar-Terr. Phys., 1998, vol. 60, pp. 289–314.
Shved, G.M., On the abundances of carbon dioxide isotopologues in the atmospheres of Mars and Earth, Solar Syst. Res., 2016, vol. 50, pp. 161–163.
Siddles, R.M., Wilson, G.J., and Simpson, C.J.S.M., The vibrational deactivation of the (0001) and (0110) modes of CO2 measured down to 140 K, Chem. Phys., 1994, vol. 189, pp. 779–791.
Simpson, C.J.S.M. and Chandler, T.R.D., A shock tube study of vibrational relaxation in pure CO2 and mixtures CO2 with the inert gases, nitrogen, deuterium and hydrogen, Proc. Roy. Soc. Lond. A, 1970, vol. 317, pp. 265–277.
Smith, M.D., Wolff, M.J., Clancy, R.T., Kleinböhl, A., and Murchie, S.L., Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations, J. Geophys. Res. E, 2013, vol. 118, pp. 321–334. doi 10.1002/jgre.20047
Starr, D.F. and Hancock, J.K., Vibrational energy transfer in CO2–CO mixtures from 163 to 406 K, J. Chem. Phys., 1975, vol. 63, pp. 4730–4734.
Stepanova, G.I. and Shved, G.M., Radiation transfer in the 4.3 μm CO2 band and the 4.7 μm CO band in the atmospheres of Venus and Mars with violation of LTE: Populations of vibrational states, Sov. Astron., 1985, vol. 29, pp. 422–428.
Stephenson, J.C., Wood, R.E., and Moore, C.B., Nearresonant energy transfer between infrared-active vibrations, J. Chem. Phys., 1968, vol. 48, pp. 4790–4791.
Stephenson, J.C. and Moore, C.B., Near-resonant vibration → vibration energy transfer: CO2(υ3 = 1) + M → CO2(υ1 = 1) + M* + ΔE, J. Chem. Phys., 1970, vol. 52, pp. 2333–2340.
Stephenson, J.C. and Moore, B., Temperature dependence of nearly resonant vibration-vibration energy transfer in CO2 mixtures, J. Chem. Phys., 1972, vol. 56, pp. 1295–1308.
Stephenson, J.C. and Mosburg, E.R., Vibrational energy transfer in CO from 100 to 300 K, J. Chem. Phys., 1974, vol. 60, pp. 3562–3566.
Taine, J. and Lepoutre, F., A photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO, Chem. Phys. Lett., 1979, vol. 65, pp. 554–558.
Taine, J. and Lepoutre, F., Determination of energy transferred to rotation-translation in deactivation of CO2(0001) by N2 and O2 and of CO(1) by CO2, Chem. Phys. Lett., 1980, vol. 75, pp. 448–451.
Vargin, A.N., Gogokhiya, V.V., Konyukhov, V.K., Koval’, A.K., Lukovnikov, A.I., and Pasynkova, L.M., Experimental determination of the relaxation channels for vibration-excited CO2 molecules, Kvant. Elektron., 1980, vol. 7, no. 7, pp. 1492–1498.
Wang, B., Gu, Y., and Kong, F., Multilevel vibrationalvibrational (V–V) energy transfer from CO(υ) to O2 and CO2, J. Phys. Chem. A, 1998, vol. 102, pp. 9367–9371.
Webster, C.R., Mahaffy, P.R., Flesch, G.J., Niles, P.B., Jones, J.H., Leshin, L.A., Atreya, S.K., Stern, J.C., Christensen, L.E., Owen, T., Franz, H., Pepin, R.O., Steele, A., and the MSL Science Team, Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere, Science, 2013, vol. 341, pp. 260–263. doi 10.1126/science1237961
Wilson, G.J., Turnidge, M.L., Reid, J.P., and Simpson, C.J.S.M., Vibrational energy transfer between isotopes of CO and isotopes of CO2 in the gas phase and in liquid Kr solution, J. Chem. Phys., 1995, vol. 102, pp. 1192–1198.
Winter, T.G., Relaxation time in CO2 as a function of H2 and D2 concentration at several temperatures, J. Chem. Phys., 1963, vol. 38, pp. 2761–2765.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.P. Ogibalov, G.M. Shved, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 5, pp. 336–348.
Rights and permissions
About this article
Cite this article
Ogibalov, V.P., Shved, G.M. An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 1. Input data and calculation method. Sol Syst Res 50, 316–328 (2016). https://doi.org/10.1134/S003809461605004X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S003809461605004X