Abstract
An atmospheric pressure plasma jet (APPJ) approach is developed to prepare platinum nanoparticles (PtNPs) under mild reaction conditions of lower temperatures and without adding chemical reagents. Optical Emission Spectroscopy (OES) and X-ray Photoelectron Spectroscopy (XPS) tests revealed that the APPJ contains a large number of high-energy active particles, which can generate solvated electrons in liquid thereby promoting the rapid reduction of Pt(IV) ions into Pt(0) atoms, and these atoms gradually grow into nanoparticles. After 3 min of treatment, PtNPs exhibit excellent dispersibility with a particle size distribution ranging from 1.8 to 2.8 nm. After 5 min, the particle size increases, and aggregation occurs. The zeta potentials for the two situations were −56.0 mV and −12.5 mV respectively. The results indicate that the treatment time has a significant impact on the dispersion, particle size distribution, and sol stability of the nanoparticles. Furthermore, it reveals the formation mechanism of PtNPs prepared by APPJ, which involves the generation and expansion of nanocrystalline nuclei, and the construction of negatively charged colloidal particles. The overall mechanism highlights the importance of the plasma-liquid interaction in the synthesis of PtNPs, offering a new perspective on the controllable production of nanomaterials using plasma technology.
During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.
After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0
Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.