[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Optical vegetation indices for monitoring terrestrial ecosystems globally

Abstract

Vegetation indices (VIs), which describe remotely sensed vegetation properties such as photosynthetic activity and canopy structure, are widely used to study vegetation dynamics across scales. However, VI-based results can vary between indices, sensors, quality control measures, compositing algorithms, and atmospheric and sun–target–sensor geometry corrections. These variations make it difficult to draw robust conclusions about ecosystem change and highlight the need for consistent VI application and verification. In this Technical Review, we summarize the history and ecological applications of VIs and the linkages and inconsistencies between them. VIs have been used since the early 1970s and have evolved rapidly with the emergence of new satellite sensors with more spectral channels, new scientific demands and advances in spectroscopy. When choosing VIs, the spectral sensitivity and features of VIs and their suitability for target application should be considered. During data analyses, steps must be taken to minimize the impact of artefacts, VI results should be verified with in situ data when possible and conclusions should be based on multiple sets of indicators. Next-generation VIs with higher signal-to-noise ratios and fewer artefacts will be possible with new satellite missions and integration with emerging vegetation metrics such as solar-induced chlorophyll fluorescence, providing opportunities for studying terrestrial ecosystems globally.

Key points

  • Optical vegetation indices (VIs) derived from space-borne Earth observations are widely used for monitoring terrestrial ecosystems and tracking plant biophysical, biochemical and physiological properties, vegetation dynamics and environmental stresses.

  • Sensor and calibration effects, quality assurance and quality control, bidirectional reflectance distribution function, atmospheric and topographic effects, and snow and soil background effects are among important uncertainty sources of VIs.

  • Potential artefacts must be carefully considered to avoid biased interpretations of the underlying ecological processes resulting from the improper use of VIs.

  • VIs based on reflectance ratios such as the normalized difference vegetation index can help reduce sensor calibration, bidirectional effects, atmospheric and topographic effects, but could be sensitive to snow and soil background and scale effects.

  • Mathematical analysis shows intrinsic similarity among several widely used VIs, including near-infrared reflectance of vegetation, enhanced vegetation index, two-band version of the enhanced vegetation index and difference vegetation index, whereas the ratio-based normalized difference vegetation index behaves differently.

  • Identifying key sensitive wavelengths for target application is the first step towards the optimal use of VIs, followed by an understanding of potential uncertainty sources in the specific ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of widely used satellites with the capability to derive vegetation indices.
Fig. 2: Satellite sensors, the vegetation and the soil spectrum across wavelengths.
Fig. 3: The taxonomy, physical meaning and similarity of vegetation indices.
Fig. 4: Vegetation indices artefacts and uncertainties.

Similar content being viewed by others

References

  1. Houborg, R., Fisher, J. B. & Skidmore, A. K. Advances in remote sensing of vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf. 43, 1–6 (2015).

    Google Scholar 

  2. Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).

    Article  Google Scholar 

  3. Gao, X., Huete, A. R., Ni, W. & Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 74, 609–620 (2000).

    Article  Google Scholar 

  4. Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).

    Article  Google Scholar 

  5. Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).

    Article  Google Scholar 

  6. Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).

    Article  Google Scholar 

  7. Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    Article  Google Scholar 

  8. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  9. Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).

    Article  Google Scholar 

  10. Fan, X. & Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J. Photogramm. Remote Sens. 121, 177–191 (2016).

    Article  Google Scholar 

  11. AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys. 53, 452–480 (2015).

    Article  Google Scholar 

  12. Anyamba, A. & Tucker, in Remote Sensing of Drought: Innovative Monitoring Approaches Ch. 2 (eds Wardlow, B. D., Anderson, M. C. & Verdin, J. P.) (Taylor & Francis, 2012).

  13. Veraverbeke, S. et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sens. Environ. 216, 105–121 (2018).

    Article  Google Scholar 

  14. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    Article  Google Scholar 

  15. Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351, 309 (1974).

    Google Scholar 

  16. Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. & Harlan, J. C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, 371 (NASA, 1974).

  17. Gutman, G., Skakun, S. & Gitelson, A. Revisiting the use of red and near-infrared reflectances in vegetation studies and numerical climate models. Sci. Remote Sens. 4, 100025 (2021).

    Article  Google Scholar 

  18. Jackson, R. D. & Huete, A. R. Interpreting vegetation indices. Prev. Vet. Med. 11, 185–200 (1991).

    Article  Google Scholar 

  19. Richardson, A. J. & Wiegand, C. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 43, 1541–1552 (1977).

    Google Scholar 

  20. Baret, F., Guyot, G. & Major, D. in 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium 1355–1358 (IEEE, 1989).

  21. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).

    Article  Google Scholar 

  22. Chen, J. M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 22, 229–242 (1996).

    Article  Google Scholar 

  23. Brown, L., Chen, J. M., Leblanc, S. G. & Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sens. Environ. 71, 16–25 (2000).

    Article  Google Scholar 

  24. Pinty, B. & Verstraete, M. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101, 15–20 (1992).

    Article  Google Scholar 

  25. Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  26. Kaufman, Y. J. & Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30, 261–270 (1992).

    Article  Google Scholar 

  27. Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845 (2008).

    Article  Google Scholar 

  28. Jin, H. & Eklundh, L. A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ. 152, 512–525 (2014).

    Article  Google Scholar 

  29. Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).

    Article  Google Scholar 

  30. Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary production: Using NIRV to scale from site to globe. Glob. Change Biol. 25, 3731–3740 (2019).

    Article  Google Scholar 

  31. Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    Article  Google Scholar 

  32. Roberts, D. A., Roth, K. L. & Perroy, R. L. in Hyperspectral Remote Sensing of Vegetation Ch. 14 (eds Thenkabail, P. S., Lyon, J. G. & Huete, A.) (CRC, 2016).

  33. Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C. & Arkebauer, T. J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32, L08403 (2005).

    Article  Google Scholar 

  34. Gitelson, A. & Merzlyak, M. N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143, 286–292 (1994).

    Article  Google Scholar 

  35. Dash, J. & Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).

    Article  Google Scholar 

  36. Penuelas, J., Baret, F. & Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31, 221–230 (1995).

    Google Scholar 

  37. Peñuelas, J., Gamon, J., Fredeen, A., Merino, J. & Field, C. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 48, 135–146 (1994).

    Article  Google Scholar 

  38. Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. & Rakitin, V. Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106, 135–141 (1999).

    Article  Google Scholar 

  39. Gitelson, A. A., Merzlyak, M. N. & Chivkunova, O. B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 74, 38–45 (2001).

    Article  Google Scholar 

  40. van den Berg, A. K. & Perkins, T. D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves. HortScience 40, 685–686 (2005).

    Article  Google Scholar 

  41. Gamon, J. & Surfus, J. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143, 105–117 (1999).

    Article  Google Scholar 

  42. Gao, B.-C. NDWI — a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).

    Article  Google Scholar 

  43. Xiao, X., Boles, S., Liu, J., Zhuang, D. & Liu, M. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82, 335–348 (2002).

    Article  Google Scholar 

  44. Xiao, X. et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89, 519–534 (2004).

    Article  Google Scholar 

  45. Yilmaz, M. T., Hunt, E. R. Jr & Jackson, T. J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 112, 2514–2522 (2008).

    Article  Google Scholar 

  46. Cheng, Y.-B., Ustin, S. L., Riaño, D. & Vanderbilt, V. C. Water content estimation from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote Sens. Environ. 112, 363–374 (2008).

    Article  Google Scholar 

  47. Serrano, L., Penuelas, J. & Ustin, S. L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens. Environ. 81, 355–364 (2002).

    Article  Google Scholar 

  48. Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).

    Article  Google Scholar 

  49. Gamon, J., Penuelas, J. & Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).

    Article  Google Scholar 

  50. Cheng, R. et al. Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences 17, 4523–4544 (2020).

    Article  Google Scholar 

  51. Seyednasrollah, B. et al. Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytol. 229, 2586–2600 (2021).

    Article  Google Scholar 

  52. Merton, R. in Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop 12–16 (NASA, 2004).

  53. Naidu, R. A., Perry, E. M., Pierce, F. J. & Mekuria, T. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agric. 66, 38–45 (2009).

    Article  Google Scholar 

  54. Chen, Y. et al. Generation and evaluation of LAI and FPAR products from Himawari-8 Advanced Himawari imager (AHI) data. Remote Sens. 11, 1517 (2019).

    Article  Google Scholar 

  55. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    Article  Google Scholar 

  56. Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. 117, G04003 (2012).

    Google Scholar 

  57. Croft, H. et al. The global distribution of leaf chlorophyll content. Remote Sens. Environ. 236, 111479 (2020).

    Article  Google Scholar 

  58. Bayat, B. et al. Toward operational validation systems for global satellite-based terrestrial essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 95, 102240 (2021).

    Google Scholar 

  59. Cui, Y., Song, L. & Fan, W. Generation of spatio-temporally continuous evapotranspiration and its components by coupling a two-source energy balance model and a deep neural network over the Heihe River Basin. J. Hydrol. 597, 126176 (2021).

    Article  Google Scholar 

  60. Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M. & Notarnicola, C. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 7, 16398–16421 (2015).

    Article  Google Scholar 

  61. Gitelson, A. A. et al. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 30, 1248 (2003).

    Article  Google Scholar 

  62. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article  Google Scholar 

  63. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  Google Scholar 

  64. Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).

    Article  Google Scholar 

  65. Jiang, Z. et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 101, 366–378 (2006).

    Article  Google Scholar 

  66. Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).

    Article  Google Scholar 

  67. Wu, C., Wang, L., Niu, Z., Gao, S. & Wu, M. Nondestructive estimation of canopy chlorophyll content using Hyperion and Landsat/TM images. Int. J. Remote Sens. 31, 2159–2167 (2010).

    Article  Google Scholar 

  68. Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).

    Article  Google Scholar 

  69. Ustin, S. L. & Gamon, J. A. Remote sensing of plant functional types. New Phytol. 186, 795–816 (2010).

    Article  Google Scholar 

  70. Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

    Article  Google Scholar 

  71. Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).

    Article  Google Scholar 

  72. Weber, M. et al. Exploring the use of DSCOVR/EPIC satellite observations to monitor vegetation phenology. Remote Sens. 12, 2384 (2020).

    Article  Google Scholar 

  73. Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).

    Article  Google Scholar 

  74. Gray, J., Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover Dynamics Product (MCD12Q2) (NASA, 2019).

  75. Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 755, 142569 (2021).

    Article  Google Scholar 

  76. Tian, F. et al. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sens. Environ. 260, 112456 (2021).

    Article  Google Scholar 

  77. Yin, G., Verger, A., Filella, I., Descals, A. & Peñuelas, J. Divergent estimates of forest photosynthetic phenology using structural and physiological vegetation indices. Geophys. Res. Lett. 47, e2020GL089167 (2020).

    Article  Google Scholar 

  78. Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article  Google Scholar 

  79. Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, L05401 (2010).

    Article  Google Scholar 

  80. Shi, Y., Huang, W., Luo, J., Huang, L. & Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 141, 171–180 (2017).

    Article  Google Scholar 

  81. Zhang, Z., Liu, M., Liu, X. & Zhou, G. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors 18, 2172 (2018).

    Article  Google Scholar 

  82. Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker III, C. J. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations (Springer, 2015).

  83. Potter, C. S. et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycles 7, 811–841 (1993).

    Article  Google Scholar 

  84. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article  Google Scholar 

  85. Yuan, W. et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 143, 189–207 (2007).

    Article  Google Scholar 

  86. Chen, M. et al. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences 8, 2665–2688 (2011).

    Article  Google Scholar 

  87. Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).

    Article  Google Scholar 

  88. Jiang, C., Guan, K., Wu, G., Peng, B. & Wang, S. A daily, 250 m, and real-time gross primary productivity product (2000–present) covering the contiguous United States. Earth Syst. Sci. Data Discuss. 2020, 1–28 (2020).

    Google Scholar 

  89. Schubert, P. et al. Modeling GPP in the Nordic forest landscape with MODIS time series data — comparison with the MODIS GPP product. Remote Sens. Environ. 126, 136–147 (2012).

    Article  Google Scholar 

  90. Zeng, Y. et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sens. Environ. 232, 111209 (2019).

    Article  Google Scholar 

  91. Baldocchi, D. D. et al. Outgoing near infrared radiation from vegetation scales with canopy photosynthesis across a spectrum of function, structure, physiological capacity and weather. J. Geophys. Res. 125, e2019JG005534 (2020).

    Google Scholar 

  92. Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).

    Article  Google Scholar 

  93. Rahman, A. F., Gamon, J. A., Fuentes, D. A., Roberts, D. A. & Prentiss, D. Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. J. Geophys. Res. Atmos. 106, 33579–33591 (2001).

    Article  Google Scholar 

  94. Zhu, Z. et al. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eabg5673 (2021).

    Article  Google Scholar 

  95. Doughty, R. et al. Small anomalies in dry-season greenness and chlorophyll fluorescence for Amazon moist tropical forests during El Niño and La Niña. Remote Sens. Environ. 253, 112196 (2021).

    Article  Google Scholar 

  96. Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).

    Article  Google Scholar 

  97. Huang, N., He, J.-S. & Niu, Z. Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol. Indic. 26, 117–125 (2013).

    Article  Google Scholar 

  98. Neale, C. M., Gonzalez-Dugo, M. P., Serrano-Perez, A., Campos, I. & Mateos, L. Cotton canopy reflectance under variable solar zenith angles: implications of use in evapotranspiration models. Hydrol. Process. 35, e14162 (2021).

    Article  Google Scholar 

  99. Chen, J. M. & Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 237, 111594 (2020).

    Article  Google Scholar 

  100. Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136–2160 (2008).

    Article  Google Scholar 

  101. Cui, Y., Jia, L. & Fan, W. Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agric. For. Meteorol. 307, 108488 (2021).

    Article  Google Scholar 

  102. Glenn, E. P., Neale, C. M., Hunsaker, D. J. & Nagler, P. L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 25, 4050–4062 (2011).

    Article  Google Scholar 

  103. French, A. N. et al. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 239, 106266 (2020).

    Article  Google Scholar 

  104. Lotsch, A., Friedl, M. A., Anderson, B. T. & Tucker, C. J. Coupled vegetation-precipitation variability observed from satellite and climate records. Geophys. Res. Lett. 30, 1774 (2003).

    Article  Google Scholar 

  105. Nezlin, N. P., Kostianoy, A. G. & Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. J. Arid Environ. 62, 677–700 (2005).

    Article  Google Scholar 

  106. Notaro, M., Liu, Z. & Williams, J. W. Observed vegetation–climate feedbacks in the United States. J. Clim. 19, 763–786 (2006).

    Article  Google Scholar 

  107. Fensholt, R. & Proud, S. R. Evaluation of earth observation based global long term vegetation trends — Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).

    Article  Google Scholar 

  108. Trishchenko, A. P., Cihlar, J. & Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 81, 1–18 (2002).

    Article  Google Scholar 

  109. Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).

    Article  Google Scholar 

  110. Wang, D. et al. Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 119, 55–61 (2012).

    Article  Google Scholar 

  111. Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).

    Article  Google Scholar 

  112. Bhatt, R. et al. A consistent AVHRR visible calibration record based on multiple methods applicable for the NOAA degrading orbits. Part I: Methodology. J. Atmos. Ocean. Technol. 33, 2499–2515 (2016).

    Article  Google Scholar 

  113. Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eabg2947 (2021).

    Article  Google Scholar 

  114. Los, S. O. Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites. IEEE Trans. Geosci. Remote Sens. 36, 206–213 (1998).

    Article  Google Scholar 

  115. Jiang, C. et al. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).

    Article  Google Scholar 

  116. de Beurs, K. M. & Henebry, G. M. Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of Central Asia. IEEE Geosci. Remote Sens. Lett. 1, 282–286 (2004).

    Article  Google Scholar 

  117. Wang, Z. et al. Large discrepancies of global greening: indication of multi-source remote sensing data. Global Ecol. Conserv. 34, e02016 (2022).

    Article  Google Scholar 

  118. Miura, T., Huete, A. R. & Yoshioka, H. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans Geosci. Remote Sens. 38, 1399–1409 (2000).

    Article  Google Scholar 

  119. Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).

    Article  Google Scholar 

  120. Buchhorn, M., Raynolds, M. K. & Walker, D. A. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra. Environ. Res. Lett. 11, 125002 (2016).

    Article  Google Scholar 

  121. Fensholt, R., Sandholt, I., Proud, S. R., Stisen, S. & Rasmussen, M. O. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data. Int. J. Remote Sens. 31, 6163–6187 (2010).

    Article  Google Scholar 

  122. Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).

    Article  Google Scholar 

  123. Lyapustin, A. I. et al. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sens. Environ. 127, 385–393 (2012).

    Article  Google Scholar 

  124. Norris, J. R. & Walker, J. J. Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States. Remote Sens. Environ. 249, 112013 (2020).

    Article  Google Scholar 

  125. Roy, D. P. et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 176, 255–271 (2016).

    Article  Google Scholar 

  126. Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).

    Article  Google Scholar 

  127. Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series) (Univ. Arizona, 2015).

  128. Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y. & Román, M. O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 207, 50–64 (2018).

    Article  Google Scholar 

  129. Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

    Article  Google Scholar 

  130. Vargas, M., Miura, T., Shabanov, N. & Kato, A. An initial assessment of Suomi NPP VIIRS vegetation index EDR. J. Geophys. Res. Atmos. 118, 12,301–12,316 (2013).

    Article  Google Scholar 

  131. Kobayashi, H. & Dye, D. G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 97, 519–525 (2005).

    Article  Google Scholar 

  132. Jiang, C. & Fang, H. GSV: a general model for hyperspectral soil reflectance simulation. Int. J. Appl. Earth Obs. Geoinf. 83, 101932 (2019).

    Google Scholar 

  133. Verrelst, J., Schaepman, M. E., Malenovský, Z. & Clevers, J. G. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sens. Environ. 114, 647–656 (2010).

    Article  Google Scholar 

  134. Huete, A. & Tucker, C. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote Sens. 12, 1223–1242 (1991).

    Article  Google Scholar 

  135. Farrar, T., Nicholson, S. & Lare, A. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil oisture. Remote Sens. Environ. 50, 121–133 (1994).

    Article  Google Scholar 

  136. Huete, A. & Warrick, A. Assessment of vegetation and soil water regimes in partial canopies with optical remotely sensed data. Remote Sens. Environ. 32, 155–167 (1990).

    Article  Google Scholar 

  137. Wang, C. et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12 (2017).

    Article  Google Scholar 

  138. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article  Google Scholar 

  139. Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. 110, E2329 (2013).

    Article  Google Scholar 

  140. Hao, D. et al. Modeling anisotropic reflectance over composite sloping terrain. IEEE Trans. Geosci. Remote Sens. 56, 3903–3923 (2018).

    Article  Google Scholar 

  141. Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7, 2636–2651 (2007).

    Article  Google Scholar 

  142. Wen, J. et al. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sens. 10, 370 (2018).

    Article  Google Scholar 

  143. Friedl, M. A., Davis, F. W., Michaelsen, J. & Moritz, M. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: an analysis using a scene simulation model and data from FIFE. Remote Sens. Environ. 54, 233–246 (1995).

    Article  Google Scholar 

  144. Tan, B. et al. The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 105, 98–114 (2006).

    Article  Google Scholar 

  145. Wolfe, R. E. et al. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83, 31–49 (2002).

    Article  Google Scholar 

  146. Ferreira, M. P. et al. Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy. Remote Sens. Environ. 211, 276–291 (2018).

    Article  Google Scholar 

  147. Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).

    Article  Google Scholar 

  148. Herrmann, S. M. & Tappan, G. G. Vegetation impoverishment despite greening: a case study from central Senegal. J. Arid Environ. 90, 55–66 (2013).

    Article  Google Scholar 

  149. Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).

    Article  Google Scholar 

  150. Donnelly, A., Yu, R. & Liu, L. Comparing in situ spring phenology and satellite-derived start of season at rural and urban sites in Ireland. Int. J. Remote Sens. 42, 7821–7841 (2021).

    Article  Google Scholar 

  151. Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Article  Google Scholar 

  152. Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Article  Google Scholar 

  153. Chen, X. & Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 15, 034042 (2020).

    Article  Google Scholar 

  154. Alatorre, L. C. et al. Temporal changes of NDVI for qualitative environmental assessment of mangroves: shrimp farming impact on the health decline of the arid mangroves in the Gulf of California (1990–2010). J. Arid Environ. 125, 98–109 (2016).

    Article  Google Scholar 

  155. Jacquemoud, S. & Baret, F. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).

    Article  Google Scholar 

  156. Wu, S. et al. Quantifying leaf optical properties with spectral invariants theory. Remote Sens. Environ. 253, 112131 (2021).

    Article  Google Scholar 

  157. Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).

    Article  Google Scholar 

  158. Van Leeuwen, W. & Huete, A. Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sens. Environ. 55, 123–138 (1996).

    Article  Google Scholar 

  159. Dechant, B. et al. NIRvP: a robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sens. Environ. 268, 112763 (2022).

    Article  Google Scholar 

  160. Zeng, Y. et al. Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sens. Environ. 267, 112723 (2021).

    Article  Google Scholar 

  161. Claverie, M. et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 219, 145–161 (2018).

    Article  Google Scholar 

  162. Hantson, S. & Chuvieco, E. Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 13, 691–700 (2011).

    Google Scholar 

  163. Zhang, H. K. et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 215, 482–494 (2018).

    Article  Google Scholar 

  164. Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006).

    Article  Google Scholar 

  165. Zhu, X. et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 172, 165–177 (2016).

    Article  Google Scholar 

  166. Luo, Y., Guan, K. & Peng, J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sens. Environ. 214, 87–99 (2018).

    Article  Google Scholar 

  167. Houborg, R. & McCabe, M. F. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sens. 10, 890 (2018).

    Article  Google Scholar 

  168. Kimm, H. et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sens. Environ. 239, 111615 (2020).

    Article  Google Scholar 

  169. Kong, J. et al. Evaluation of four image fusion NDVI products against in-situ spectral-measurements over a heterogeneous rice paddy landscape. Agric. For. Meteorol. 297, 108255 (2021).

    Article  Google Scholar 

  170. Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 10,456–10,463 (2018).

    Article  Google Scholar 

  171. Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

    Article  Google Scholar 

  172. Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).

    Article  Google Scholar 

  173. Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).

    Article  Google Scholar 

  174. Qiu, B., Ge, J., Guo, W., Pitman, A. J. & Mu, M. Responses of Australian dryland vegetation to the 2019 heat wave at a subdaily scale. Geophys. Res. Lett. 47, e2019GL086569 (2020).

    Article  Google Scholar 

  175. Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).

    Article  Google Scholar 

  176. Guanter, L. et al. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 8, 1337–1352 (2015).

    Article  Google Scholar 

  177. Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013).

    Article  Google Scholar 

  178. Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article  Google Scholar 

  179. Zeng, Y. et al. Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sens. Environ. 270, 112856 (2022).

    Article  Google Scholar 

  180. Shi, J. et al. Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens. Environ. 112, 4285–4300 (2008).

    Article  Google Scholar 

  181. Talebiesfandarani, S. et al. Microwave vegetation index from multi-angular observations and its application in vegetation properties retrieval: theoretical modelling. Remote Sens. 11, 730 (2019).

    Article  Google Scholar 

  182. Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).

    Article  Google Scholar 

  183. Zhang, Y., Zhou, S., Gentine, P. & Xiao, X. Can vegetation optical depth reflect changes in leaf water potential during soil moisture dry-down events? Remote Sens. Environ. 234, 111451 (2019).

    Article  Google Scholar 

  184. Frappart, F. et al. Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD): a review. Remote Sens. 12, 2915 (2020).

    Article  Google Scholar 

  185. Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).

    Article  Google Scholar 

  186. Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).

    Article  Google Scholar 

  187. Somkuti, P. et al. Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study. Remote Sens. Environ. 263, 112565 (2021).

    Article  Google Scholar 

  188. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  189. Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P. & Ollinger, S. V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 19, 1417–1428 (2009).

    Article  Google Scholar 

  190. Daughtry, C. S. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 93, 125–131 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

Y.Z. and M.C. acknowledges support from the National Aeronautics and Space Administration (NASA) through Remote Sensing Theory and Terrestrial Ecology programmes 80NSSC21K0568 and 80NSSC21K1702. M.C. also acknowledges support by a McIntire–Stennis grant (1027576) from the National Institute of Food and Agriculture (NIFA), United States Department of Agriculture (USDA). B.D. acknowledges support by sDiv, the Synthesis Centre of iDiv (DFG FZT 118, 202548816). J.X. was supported by the National Science Foundation (NSF) (Macrosystems Biology and NEON-Enabled Science programme: DEB-2017870). Y.R. was supported by the National Research Foundation of Korea (NRF-2019R1A2C2084626). The authors thank G. Badgley for fruitful discussions on vegetation indices and P. Köhler for the TROPOMI far-red daily SIF dataset.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., M.C., D.H. and A.H. wrote the initial draft of the manuscript. All authors reviewed and edited the manuscript and made substantial contributions to the improvement of the manuscript.

Corresponding authors

Correspondence to Dalei Hao or Min Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Earth & Environment thanks F. Tian, Z. Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Hao, D., Huete, A. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat Rev Earth Environ 3, 477–493 (2022). https://doi.org/10.1038/s43017-022-00298-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00298-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing