[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Simulation-based training and assessment in urological surgery

This article has been updated

Key Points

  • The largest number of urological training simulators have been produced for training in endourology; these models are also the most robustly evaluated, with the URO Mentor (Symbionix, USA) holding the highest level of evidence

  • Despite great numbers of generic skills simulators, laparoscopic and robotic procedural models are few in number

  • Development of models for open urological surgery has been limited, with currently available models supported by only low levels of evidence

  • A number of curricula have been produced, incorporating various different training modalities and nontechnical skills, with the aim of optimizing simulation training

  • Patient-specific simulation — in the form of virtual reality (VR) simulators and 3D-printed models — is on the increase, which could prove to be useful in anticipation of complex cases

  • A curriculum for training in urological techniques is recommended

Abstract

Simulation has become widely accepted as a supplementary method of training. Within urology, the greatest number of procedure-specific models and subsequent validation studies have been carried out in the field of endourology. Many generic-skills simulators have been created for laparoscopic and robot-assisted surgery, but only a limited number of procedure-specific models are available. By contrast, open urological simulation has only seen a handful of validated models. Of the available modalities, virtual reality (VR) simulators are most commonly used for endourology and robotic surgery training, the former also employing many high-fidelity bench models. Smaller dry-lab and ex vivo animal models have been used for laparoscopic and robotic training, whereas live animals and human cadavers are widely used for full procedural training. Newer concepts such as augmented-reality (AR) models and patient-specific simulators have also been introduced. Several curricula, including one recommended within, have been produced, incorporating various different training modalities and nontechnical skills training techniques. Such curricula and validated models should be used in a structured fashion to supplement operating room training.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components of nontechnical skills.
Figure 2: Recommended simulation training pathway.

Similar content being viewed by others

Change history

  • 31 August 2016

    In the version of this article initially published online the corresponding author was incorrect. The correct corresponding author is Prokar Dasgupta. This error has been corrected for the HTML, PDF and print versions of the article.

References

  1. Coxon, J. P., Pattison, S. H., Parks, J. W., Stevenson, P. K. & Kirby, R. S. Reducing human error in urology: lessons from aviation. BJU Int. 91, 1–3 (2003).

    CAS  PubMed  Google Scholar 

  2. McGreevy, J. M. The aviation paradigm and surgical education. J. Am. Coll. Surg. 201, 110–117 (2005).

    PubMed  Google Scholar 

  3. Reznick, R. K. & MacRae, H. Teaching surgical skills—changes in the wind. N. Engl. J. Med. 355, 2664–2669 (2006).

    CAS  PubMed  Google Scholar 

  4. Torkington, J., Smith, S. G., Rees, B. I. & Darzi, A. Skill transfer from virtual reality to a real laparoscopic task. Surg. Endosc 15, 1076–1079 (2001).

    CAS  PubMed  Google Scholar 

  5. Andreatta, P. B. et al. Laparoscopic skills are improved with LapMentor training: results of a randomized, double-blinded study. Ann. Surg. 243, 854–860 (2006).

    PubMed  PubMed Central  Google Scholar 

  6. Sedlack, R. E. & Kolars, J. C. Computer simulator training enhances the competency of gastroenterology fellows at colonoscopy: results of a pilot study. Am. J. Gastroenterol. 99, 33–37 (2004).

    PubMed  Google Scholar 

  7. Schout, B. M., Hendrikx, A. J., Scherpbier, A. J. & Bemelmans, B. L. Update on training models in endourology: a qualitative systematic review of the literature between January 1980 and April 2008. Eur. Urol. 54, 1247–1261 (2008).

    PubMed  Google Scholar 

  8. McDougall, E. M. Validation of surgical simulators. J. Endourol. 21, 244–247 (2007).

    PubMed  Google Scholar 

  9. Van Nortwick, S. S. et al. Methodologies for establishing validity in surgical simulation studies. Surgery 147, 622–630 (2010).

    PubMed  Google Scholar 

  10. Brewin, J., Ahmed, K. & Challacombe, B. An update and review of simulation in urological training. Int. J. Surg. 12, 103–108 (2014).

    PubMed  Google Scholar 

  11. Gettman, M. T. et al. Analysis of a computer based simulator as an educational tool for cystoscopy: subjective and objective results. J. Urol. 179, 267–271 (2008).

    PubMed  Google Scholar 

  12. Gettman, M. T. et al. Development of a standardized curriculum for teaching cystoscopic skills using a computer-based endourologic simulator. Simul. Healthcare: J. Soc. Simul. Healthcare 4, 92–97 (2009).

    Google Scholar 

  13. Dolmans, V. E. et al. The virtual reality endourologic simulator is realistic and useful for educational purposes. J. Endourol. 23, 1175–1181 (2009).

    PubMed  Google Scholar 

  14. Shamim Khan, M. et al. Development and implementation of centralized simulation training: evaluation of feasibility, acceptability and construct validity. BJU Int. 111, 518–523 (2013).

    PubMed  Google Scholar 

  15. Shah, J., Montgomery, B., Langley, S. & Darzi, A. Validation of a flexible cystoscopy course. BJU Int. 90, 833–835 (2002).

    CAS  PubMed  Google Scholar 

  16. Shah, J. & Darzi, A. Virtual reality flexible cystoscopy: a validation study. BJU Int. 90, 828–832 (2002).

    CAS  PubMed  Google Scholar 

  17. Schout, B. M. et al. Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int. 106, 226–231 (2010).

    PubMed  Google Scholar 

  18. Schout, B. M. et al. Acquisition of flexible cystoscopy skills on a virtual reality simulator by experts and novices. BJU Int. 105, 234–239 (2010).

    PubMed  Google Scholar 

  19. Persoon, M. C. et al. Effect of distraction on the performance of endourological tasks: a randomized controlled trial. BJU Int. 107, 1653–1657 (2011).

    PubMed  Google Scholar 

  20. Zhang, Y. et al. Effectiveness of the UroMentor virtual reality simulator in the skill acquisition of flexible cystoscopy. Chin. Med. J. 126, 2079–2082 (2013).

    PubMed  Google Scholar 

  21. Michel, M. S., Knoll, T., Kohrmann, K. U. & Alken, P. The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU Int. 89, 174–177 (2002).

    CAS  PubMed  Google Scholar 

  22. Watterson, J. D., Beiko, D. T., Kuan, J. K. & Denstedt, J. D. Randomized prospective blinded study validating acquistion of ureteroscopy skills using computer based virtual reality endourological simulator. J. Urol. 168, 1928–1932 (2002).

    PubMed  Google Scholar 

  23. Mishra, S. et al. Comparative performance of high-fidelity training models for flexible ureteroscopy: are all models effective? Indian J. Urol. 27, 451–456 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. Wilhelm, D. M., Ogan, K., Roehrborn, C. G., Cadeddu, J. A. & Pearle, M. S. Assessment of basic endoscopic performance using a virtual reality simulator. J. Am. Coll. Surg. 195, 675–681 (2002).

    PubMed  Google Scholar 

  25. Knoll, T. et al. Ureterorenoscopy: Impact of simulator-training on clinical skills. Eur. Urol. Suppl. 2, 199 (2003).

    Google Scholar 

  26. Jacomides, L., Ogan, K., Cadeddu, J. A. & Pearle, M. S. Use of a virtual reality simulator for ureteroscopy training. J. Urol. 171, 320–323 (2004).

    PubMed  Google Scholar 

  27. Knoll, T., Trojan, L., Haecker, A., Alken, P. & Michel, M. S. Validation of computer-based training in ureterorenoscopy. BJU Int. 95, 1276–1279 (2005).

    PubMed  Google Scholar 

  28. Cai, J. L. et al. Proficiency of virtual reality simulator training in flexible retrograde ureteroscopy renal stone management. Chin. Med. J. 126, 3940–3943 (2013).

    PubMed  Google Scholar 

  29. Ogan, K. et al. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J. Urol. 172, 667–671 (2004).

    PubMed  Google Scholar 

  30. Chou, D. S., Abdelshehid, C., Clayman, R. V. & McDougall, E. M. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J. Endourol. 20, 266–271 (2006).

    PubMed  Google Scholar 

  31. Matsumoto, E. D. et al. Assessment of basic human performance resources predicts performance of ureteroscopy. Am. J. Surg. 191, 817–820 (2006).

    PubMed  Google Scholar 

  32. Knudsen, B. E. et al. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I. J. Urol. 176, 2173–2178 (2006).

    PubMed  Google Scholar 

  33. Ganpule, A. P., Mishra, S., Sabnis, R. B., Muthu, V. & Desai, M. R. Evaluation and validation of virtual reality (VR) based simulation to develop endourological percutaneous renal access technique for urological trainees. J. Urol. 181, 491–492 (2009).

    Google Scholar 

  34. Patel, D. et al. Assessing and developing percutaneous renal access skills to trainees using the state of the art PERC mentor simulation trainer. J. Urol. 183 (Suppl. 1), e514 (2010).

    Google Scholar 

  35. Papatsoris, A. G. et al. Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees. Urol. Intern. 89, 185–190 (2012).

    CAS  Google Scholar 

  36. Mishra, S. et al. Validation of virtual reality simulation for percutaneous renal access training. J. Endourol. 24, 635–640 (2010).

    PubMed  Google Scholar 

  37. Jagtap, J. Surgical skills lab for percutaneous renal access training: Content validation comparison between live porcine and VR simulation model. J. Urol. 183, e515 (2010).

    Google Scholar 

  38. Mishra, S. et al. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model. BJU Int. 106, 1753–1756 (2010).

    PubMed  Google Scholar 

  39. Ballaro, A. et al. A computer generated interactive transurethral prostatic resection simulator. J. Urol. 162, 1633–1635 (1999).

    CAS  PubMed  Google Scholar 

  40. Kallstrom, R., Hjertberg, H., Kjolhede, H. & Svanvik, J. Use of a virtual reality, real-time, simulation model for the training of urologists in transurethral resection of the prostate. Scand. J. Urol. Nephrol. 39, 313–320 (2005).

    PubMed  Google Scholar 

  41. Kallstrom, R., Hjertberg, H. & Svanvik, J. Construct validity of a full procedure, virtual reality, real-time, simulation model for training in transurethral resection of the prostate. J. Endourol. 24, 109–115 (2010).

    PubMed  Google Scholar 

  42. Kallstrom, R., Hjertberg, H. & Svanvik, J. Impact of virtual reality-simulated training on urology residents' performance of transurethral resection of the prostate. J. Endourol. 24, 1521–1528 (2010).

    PubMed  Google Scholar 

  43. Rashid, H. H. et al. The virtual reality transurethral prostatic resection trainer: evaluation of discriminate validity. J. Urol. 177, 2283–2286 (2007).

    PubMed  Google Scholar 

  44. Sweet, R., Kowalewski, T., Oppenheimer, P., Weghorst, S. & Satava, R. Face, content and construct validity of the University of Washington virtual reality transurethral prostate resection trainer. J. Urol. 172, 1953–1957 (2004).

    CAS  PubMed  Google Scholar 

  45. Hudak, S. J., Landt, C. L., Hernandez, J. & Soderdahl, D. W. External validation of a virtual reality transurethral resection of the prostate simulator. J. Urol. 184, 2018–2022 (2010).

    PubMed  Google Scholar 

  46. Zhu, H. et al. Virtual reality simulator for training urologists on transurethral prostatectomy. Chin. Med. J. 126, 1220–1223 (2013).

    PubMed  Google Scholar 

  47. Bright, E., Vine, S., Wilson, M. R., Masters, R. S. & McGrath, J. S. Face validity, construct validity and training benefits of a virtual reality TURP simulator. Int. J. Surg. 10, 163–166 (2012).

    PubMed  Google Scholar 

  48. Kishore, T. A. et al. Task deconstruction facilitates acquisition of transurethral resection of prostate skills on a virtual reality trainer. J. Endourol. Soc. 23, 665–668 (2009).

    Google Scholar 

  49. Kuronen-Stewart, C. et al. Holmium laser enucleation of the prostate: simulation-based training curriculum and validation. Urology 86, 639–646 (2015).

    PubMed  Google Scholar 

  50. Angulo, J. C. et al. Virtual reality simulator for training on photoselective vaporization of the prostate with 980 nm diode laser and learning curve of the technique. Actas Urol. Esp. 38, 451–458 (2014).

    CAS  PubMed  Google Scholar 

  51. Saredi, G. et al. Evaluation of the learning curve for thulium laser enucleation of the prostate with the aid of a simulator tool but without tutoring: comparison of two surgeons with different levels of endoscopic experience. BMC Urol. 15, 49 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Sanchez-Gomez, L. M., Polo-deSantos, M., Gomez-Sancha, F. & Luengo-Matos, S. Efficacy and safety of the urolift(R) system for the treatment of benign prostate hyperplasia symptoms: systematic review. Actas Urol. Esp. 39, 311–319 (2015).

    CAS  PubMed  Google Scholar 

  53. McVary, K. T. et al. Minimally invasive prostate convective water vapor energy ablation: a multicenter, randomized, controlled study for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Urol. 195, 1529–1538 (2016).

    PubMed  Google Scholar 

  54. Shen, Y. et al. Laser surgery simulation platform: toward full-procedure training and rehearsal for benign prostatic hyperplasia (BPH) therapy. Stud. Health Technol. Inform. 163, 574–580 (2011).

    PubMed  Google Scholar 

  55. Herlemann, A. et al. Virtual reality systems in urologic surgery: an evaluation of the GreenLight simulator. Eur. Urol. 64, 687–688 (2013).

    PubMed  Google Scholar 

  56. Aydin, A. et al. Validation of the GreenLight Simulator and development of a training curriculum for photoselective vaporisation of the prostate. BJU Int. 115, 994–1003 (2015).

    PubMed  Google Scholar 

  57. Noureldin, Y. et al. Incorporation of the GreenLight-SIM Simulator at the Annual Quebec Urology Objective Structured Clinical Examinations. Urology 84 (Suppl. 1), S139 (2014).

    Google Scholar 

  58. Shen, Y. et al. Virtual trainer for intra-detrusor injection of botulinum toxin to treat urinary incontinence. Studies Health Technol. Inform. 173, 457–462 (2012).

    Google Scholar 

  59. Fuoco, M., U. T., Siemens, R., Fichtinger, G. & Beiko, D. Percutaneous nephrostomy for dummies: electromagnetic needle guidance with tracked ultrasound snapshots in a simulation model. J. Urol. 191 (Suppl. 1), 191 (2014).

    Google Scholar 

  60. Ungi, T. et al. Perk Tutor: an open-source training platform for ultrasound-guided needle insertions. IEEE Trans. Biomed. Eng. 59, 3475–3481 (2012).

    PubMed  Google Scholar 

  61. Aydin, A. et al. Validation of a Dry-lab Training Model for Cystoscopy and Delivery of Intravesical Botolinum-Toxin Injections. J. Endourol. 29, A80–81 (2015).

    Google Scholar 

  62. Soria, F. et al. Development and Validation of a Novel Skills Training Model for Retrograde Intrarenal Surgery. J. Endourol. 29, 1276–1281 (2015).

    PubMed  Google Scholar 

  63. Matsumoto, E. D., Hamstra, S. J., Radomski, S. B. & Cusimano, M. D. The effect of bench model fidelity on endourological skills: a randomized controlled study. J. Urol. 167, 1243–1247 (2002).

    PubMed  Google Scholar 

  64. Matsumoto, E. D., Hamstra, S. J., Radomski, S. B. & Cusimano, M. D. A novel approach to endourological training: training at the Surgical Skills Center. J. Urol. 166, 1261–1266 (2001).

    CAS  PubMed  Google Scholar 

  65. Brehmer, M. & Tolley, D. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur. Urol. 42, 175–179; discussion 180 (2002).

    PubMed  Google Scholar 

  66. Brehmer, M. & Swartz, R. Training on bench models improves dexterity in ureteroscopy. Eur. Urol. 48, 458–463 (2005).

    PubMed  Google Scholar 

  67. Cloutier, J. & Traxer, O. Do high-fidelity training models translate into better skill acquisition for an endourologist? Curr. Opin. Urol. 25, 143–152 (2015).

    PubMed  Google Scholar 

  68. Villa, L. et al. Comprehensive flexible ureteroscopy (FURS) simulator for training in endourology: the K-box model. Cent. Eur. J. Urol. http://dx.doi.org/10.5173/ceju.2016.710 (2016).

  69. Villa, V. et al. Preliminary Results of an Intensive Training On A Simulation Model For Flexible Ureteroscopy in Medical Students: The Kidney-Box (K-BOX) Model. J Endourol. A78–A79 (2015).

  70. Blankstein, U. et al. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. Can. Urol. Assoc. J. 9, 331–335 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. White, M. A., Dehaan, A. P., Stephens, D. D., Maes, A. A. & Maatman, T. J. Validation of a high fidelity adult ureteroscopy and renoscopy simulator. J. Urol. 183, 673–677 (2010).

    PubMed  Google Scholar 

  72. Wignall, G. R. et al. Surgical simulation: a urological perspective. J. Urol. 179, 1690–1699 (2008).

    PubMed  Google Scholar 

  73. Hoznek, A. et al. Simulation training in video-assisted urologic surgery. Curr. Urol. Rep. 7, 107–113 (2006).

    PubMed  Google Scholar 

  74. Maldonado-Alcaraz, E. et al. Use of a novel radiation-free fluoroscopy emulator (iPERC) to improve surgical skills in percutaneous nephrolithotomy. J. Endourol. 29, A139–A140 (2015).

    Google Scholar 

  75. Veneziano, D., Smith, A., Reihsen, T., Speich, J. & Sweet, R. M. The SimPORTAL fluoro-less C-arm trainer: an innovative device for percutaneous kidney access. J. Endourol. 29, 240–245 (2015).

    PubMed  Google Scholar 

  76. Chrouser, K., Marsh, B. & Sweet, R. Percutaneous access skill improvement after the aua pcnl training course using the simportal fluoroless c-arm trainer. J. Urol. 195, e213 (2016).

    Google Scholar 

  77. Brewin, J., Ahmed, K., Khan, M. S., Jaye, P. & Dasgupta, P. Face, content, and construct validation of the Bristol TURP trainer. J. Surg. Educ. 71, 500–505 (2014).

    PubMed  Google Scholar 

  78. de Vries, A. H. et al. The Simbla TURBT Simulator in Urological Residency Training: From Needs Analysis to Validation. J. Endourol, http://dx.doi.org/10.1089/end.2015.0723 (2015).

  79. Kinoshita, H., Mishima, T. & Matsuda, T. Developing the Real Type Simulation for HoLEP (Holmium Laser Enucleation of Prostate). J. Endourol. 28, A126 (2014).

    Google Scholar 

  80. Aydin, A. et al. Face and content validation of the prostatic hyperplasia model and holmium laser surgery simulator. J. Surg. Educ. 71, 339–344 (2014).

    PubMed  Google Scholar 

  81. Bruyere, F., Leroux, C., Brunereau, L. & Lermusiaux, P. Rapid prototyping model for percutaneous nephrolithotomy training. J. Endourol. Soc. 22, 91–96 (2008).

    Google Scholar 

  82. Schout, B. et al. Teaching diagnostic and therapeutic procedures of bladder pathology using a newly developed pig bladder model. J. Endourol. 22, 2547–2553 (2008).

    PubMed  Google Scholar 

  83. Grimsby, G. M. et al. Urologic surgical simulation: an endoscopic bladder model. Simul. Healthcare 6, 352–355 (2011).

    Google Scholar 

  84. Soria, F. et al. Description and validation of realistic and structured endourology training model. Am. J. Clin. Exp. Urol. 2, 258–265 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Hu, D., Liu, T. & Wang, X. Flexible ureteroscopy training for surgeons using isolated porcine kidneys in vitro. BMC Urol. 15, 71 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Earp, P. P. Percutaneous renal surgery—new model for learning and training. Int. Braz. J. Urol. 29, 151–154 (2003).

    PubMed  Google Scholar 

  87. Strohmaier, W. L. & Giese, A. Ex vivo training model for percutaneous renal surgery. Urol. Res. 33, 191–193 (2005).

    PubMed  Google Scholar 

  88. Zhang, Y. et al. Novel biologic model for percutaneous renal surgery learning and training in the laboratory. Urology 72, 513–516 (2008).

    PubMed  Google Scholar 

  89. Hacker, A. et al. A biological model to teach percutaneous nephrolithotomy technique with ultrasound- and fluoroscopy-guided access. J. Endourol. Soc. 21, 545–550 (2007).

    Google Scholar 

  90. Hammond, L., Ketchum, J. & Schwartz, B. F. A new approach to urology training: a laboratory model for percutaneous nephrolithotomy. J. Urol. 172, 1950–1952 (2004).

    PubMed  Google Scholar 

  91. Hammond, L., Ketchum, J. & Schwartz, B. F. Accreditation council on graduate medical education technical skills competency compliance: urologic surgical skills. J. Am. Coll. Surg. 201, 454–457 (2005).

    PubMed  Google Scholar 

  92. Ahmed, K., Aydin, A., Dasgupta, P., Khan, M. S. & McCabe, J. E. A. Novel Cadaveric Simulation Program in Urology. J. Surg. Educ. 72, 556–565 (2015).

    PubMed  Google Scholar 

  93. Huri, E. et al. Simulation of RIRS in soft cadavers: a novel training model by the Cadaveric Research On Endourology Training (CRET) Study Group. World J. Urol. 34, 741 (2015).

    PubMed  Google Scholar 

  94. Page, T. The use of fresh fozen cadavers for the teaching of Holmium laser enucleation of prostate, Thulium prostate resection and high power KTP laser vapourisation. BJU Int. 115, 52 (2015).

    Google Scholar 

  95. Bowling, C. B. et al. Testing and validation of a low-cost cystoscopy teaching model: a randomized controlled trial. Obstetr. Gynecol. 116, 85–91 (2010).

    Google Scholar 

  96. Rai, B. et al. Face validity study of cadavers using thiel method of embalming for endoscopic surgery in urology. Urology 84 (Suppl. 1), S137 (2014).

    Google Scholar 

  97. Mains, E. A. A. et al. Ureterorenoscopy Training on Cadavers Embalmed by Thiel's Method: Simulation or a Further Step towards Reality? Initial Report. J. Endourol. 29, A140 (2015).

    Google Scholar 

  98. Healy, S. E. et al. Thiel embalming method for cadaver preservation: a review of new training model for urologic skills training. Urology 85, 499–504 (2015).

    PubMed  Google Scholar 

  99. Dehabadi, M., Fernando, B. & Berlingieri, P. The use of simulation in the acquisition of laparoscopic suturing skills. Int. J. Surg. 12, 258–268 (2014).

    PubMed  Google Scholar 

  100. Brewin, J. et al. Face, content and construct validation of the first virtual reality laparoscopic nephrectomy simulator. BJU Int. 106, 850–854 (2010).

    PubMed  Google Scholar 

  101. Wijn, R. P. et al. Virtual reality laparoscopic nephrectomy simulator is lacking in construct validity. J. Endourol. 24, 117–122 (2010).

    CAS  PubMed  Google Scholar 

  102. Zhang, A., Hunerbein, M., Dai, Y., Schlag, P. M. & Beller, S. Construct validity testing of a laparoscopic surgery simulator (Lap Mentor): evaluation of surgical skill with a virtual laparoscopic training simulator. Surg. Endosc. 22, 1440–1444 (2008).

    PubMed  Google Scholar 

  103. McDougall, E. M. et al. Construct validity testing of a laparoscopic surgical simulator. J. Am. Coll. Surg. 202, 779–787 (2006).

    PubMed  Google Scholar 

  104. Ayodeji, I. D., Schijven, M., Jakimowicz, J. & Greve, J. W. Face validation of the Simbionix LAP Mentor virtual reality training module and its applicability in the surgical curriculum. Surg. Endosc. 21, 1641–1649 (2007).

    CAS  PubMed  Google Scholar 

  105. Woodrum, D. T. et al. Construct validity of the LapSim laparoscopic surgical simulator. Am. J. Surg. 191, 28–32 (2006).

    PubMed  Google Scholar 

  106. Duffy, A. J. et al. Construct validity for the LAPSIM laparoscopic surgical simulator. Surg. Endosc. 19, 401–405 (2005).

    CAS  PubMed  Google Scholar 

  107. Alwaal, A. et al. Transfer of skills on LapSim virtual reality laparoscopic simulator into the operating room in urology. Urol. Ann. 7, 172–176 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Fernandez, A. et al. First prize: a phantom model as a teaching modality for laparoscopic partial nephrectomy. J. Endourol. 26, 1–5 (2012).

    PubMed  Google Scholar 

  109. Lee, J. Y., Mucksavage, P., Canales, C., McDougall, E. M. & Lin, S. High fidelity simulation based team training in urology: a preliminary interdisciplinary study of technical and nontechnical skills in laparoscopic complications management. J. Urol. 187, 1385–1391 (2012).

    PubMed  Google Scholar 

  110. Abdelshehid, C. S. et al. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy. J. Surg. Educ. 70, 588–595 (2013).

    PubMed  Google Scholar 

  111. Poniatowski, L. H. et al. Validity and acceptability of a high-fidelity physical simulation model for training of laparoscopic pyeloplasty. J. Endourol. 28, 393–398 (2014).

    PubMed  Google Scholar 

  112. Cheung, C. L., Looi, T., Lendvay, T. S., Drake, J. M. & Farhat, W. A. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J. Surg. Educ. 71, 762–767 (2014).

    PubMed  Google Scholar 

  113. Tunitsky, E., Murphy, A., Barber, M. D., Simmons, M. & Jelovsek, J. E. Development and validation of a ureteral anastomosis simulation model for surgical training. Female Pelv. Med. Reconstr. Surg. 19, 346–351 (2013).

    Google Scholar 

  114. Sabbagh, R. et al. Transfer of laparoscopic radical prostatectomy skills from bench model to animal model: a prospective, single-blind, randomized, controlled study. J. Urol. 187, 1861–1866 (2012).

    PubMed  Google Scholar 

  115. van Velthoven, R. F. & Hoffmann, P. Methods for laparoscopic training using animal models. Curr. Urol. Rep. 7, 114–119 (2006).

    PubMed  Google Scholar 

  116. Molinas, C. R., Binda, M. M., Mailova, K. & Koninckx, P. R. The rabbit nephrectomy model for training in laparoscopic surgery. Hum. Reprod. 19, 185–190 (2004).

    PubMed  Google Scholar 

  117. Jiang, C. et al. Construct validity of the chicken crop model in the simulation of laparoscopic pyeloplasty. J. Endourol. 27, 1032–1036 (2013).

    PubMed  Google Scholar 

  118. Laguna, M. P. et al. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J. Endourol. 20, 69–73 (2006).

    CAS  PubMed  Google Scholar 

  119. Katz, R. et al. A simplified 5-step model for training laparoscopic urethrovesical anastomosis. J. Urol. 169, 2041–2044 (2003).

    PubMed  Google Scholar 

  120. Nadu, A., Olsson, L. E. & Abbou, C. C. Simple model for training in the laparoscopic vesicourethral running anastomosis. J. Endourol. 17, 481–484 (2003).

    PubMed  Google Scholar 

  121. Yang, R. M. & Bellman, G. C. Laparoscopic urethrovesical anastomosis: a model to assess surgical competency. J. Endourol. 20, 679–682 (2006).

    PubMed  Google Scholar 

  122. Sotelo, R. J., Astigueta, J. C., Carmona, O. J., De Andrade, R. J. & Moreira, O. E. Chicken gizzard: a new training model for laparoscopic urethrovesical anastomosis. Actas Urol. Espanolas 33, 1083–1087 (2009).

    Google Scholar 

  123. Teber, D. et al. Single-knot running suture anastomosis (one-knot pyeloplasty) for laparoscopic dismembered pyeloplasty: training model on a porcine bladder and clinical results. Int. Urol. Nephrol. 42, 609–614 (2010).

    PubMed  Google Scholar 

  124. Boon, J. R. et al. Construct validity of the pig intestine model in the simulation of laparoscopic urethrovesical anastomosis: tools for objective evaluation. J. Endourol. 22, 2713–2716 (2008).

    PubMed  Google Scholar 

  125. Jiang, C. et al. A training model for laparoscopic urethrovesical anastomosis. J. Endourol. 22, 1541–1545 (2008).

    PubMed  Google Scholar 

  126. Hung, A. J. et al. Face, content and construct validity of a novel robotic surgery simulator. J. Urol. 186, 1019–1024 (2011).

    PubMed  Google Scholar 

  127. Liss, M. A. et al. Validation, correlation, and comparison of the da Vinci trainer™ and the daVinci surgical skills simulator™ using the Mimic™ software for urologic robotic surgical education. J. Endourol. 26, 1629–1634 (2012).

    PubMed  Google Scholar 

  128. Alzahrani, T. et al. Validation of the da Vinci Surgical Skill Simulator across three surgical disciplines: a pilot study. Can. Urol. Assoc. J. 7, E520–529 (2013).

    Google Scholar 

  129. Kelly, D. C. et al. Face, content, and construct validation of the da Vinci Skills Simulator. Urology 79, 1068–1072 (2012).

    PubMed  Google Scholar 

  130. Lyons, C. et al. Which skills really matter? proving face, content, and construct validity for a commercial robotic simulator. Surg. Endosc. 27, 2020–2030 (2013).

    PubMed  Google Scholar 

  131. Connolly, M., Seligman, J., Kastenmeier, A., Goldblatt, M. & Gould, J. C. Validation of a virtual reality-based robotic surgical skills curriculum. Surg. Endosc. 28, 1691–1694 (2014).

    PubMed  Google Scholar 

  132. Finnegan, K. T., Meraney, A. M., Staff, I. & Shichman, S. J. da Vinci Skills Simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology 80, 330–335 (2012).

    PubMed  Google Scholar 

  133. Hung, A. J. et al. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 112, 864–871 (2013).

    PubMed  Google Scholar 

  134. Hung, A. J. et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J. Urol. 187, 630–637 (2012).

    PubMed  Google Scholar 

  135. Lendvay, T. S., Casale, P., Sweet, R. & Peters, C. Initial validation of a virtual-reality robotic simulator. J. Robot. Surg. 2, 145–149 (2008).

    PubMed  Google Scholar 

  136. Kenney, P. A., Wszolek, M. F., Gould, J. J., Libertino, J. A. & Moinzadeh, A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology 73, 1288–1292 (2009).

    PubMed  Google Scholar 

  137. Sethi, A. S., Peine, W. J., Mohammadi, Y. & Sundaram, C. P. Validation of a novel virtual reality robotic simulator. J. Endourol. 23, 503–508 (2009).

    PubMed  Google Scholar 

  138. Korets, R. et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology 78, 1326–1330 (2011).

    PubMed  Google Scholar 

  139. Lee, J. Y. et al. Validation study of a virtual reality robotic simulator—role as an assessment tool? J. Urol. 187, 998–1002 (2012).

    PubMed  Google Scholar 

  140. Perrenot, C. et al. The virtual reality simulator dV-Trainer((R)) is a valid assessment tool for robotic surgical skills. Surg. Endosc. 26, 2587–2593 (2012).

    PubMed  Google Scholar 

  141. Egi, H. et al. Face, content and concurrent validity of the Mimic(R) dV-Trainer for robot-assisted endoscopic surgery: a prospective study. European surgical research. Europaische Chirurgische Forschung. Recherches Chirurgicales Europeennes 50, 292–300 (2013).

    CAS  PubMed  Google Scholar 

  142. Schreuder, H. W. et al. Validation of a novel virtual reality simulator for robotic surgery. Sci. World J. 2014, 507076 (2014).

    Google Scholar 

  143. Kang, S. G. et al. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology 84, 345–350 (2014).

    PubMed  Google Scholar 

  144. Lee, B. R. et al. A novel method of surgical instruction: international telementoring. World J. Urol. 16, 367–370 (1998).

    CAS  PubMed  Google Scholar 

  145. Whitehurst, S. V. et al. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model). J. Minim. Invasive Gynecol. 22, 483–488 (2015).

    PubMed  Google Scholar 

  146. Lerner, M. A., Ayalew, M., Peine, W. J. & Sundaram, C. P. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J. Endourol. 24, 467–472 (2010).

    PubMed  Google Scholar 

  147. Cho, J. S. et al. Virtual reality training improves da Vinci performance: a prospective trial. Journal of laparoendoscopic and advanced surgical techniques. J. Laparoendoc. Adv. Surg. Tech. A 23, 992–998 (2013).

    Google Scholar 

  148. Kim, J. Y. et al. Concurrent and predictive validation of robotic simulator Tube 3 module. Kor. J. Urol. 56, 756–761 (2015).

    Google Scholar 

  149. Seixas-Mikelus, S. A. et al. Face validation of a novel robotic surgical simulator. Urology 76, 357–360 (2010).

    PubMed  Google Scholar 

  150. Seixas-Mikelus, S. A. et al. Content validation of a novel robotic surgical simulator. BJU Int. 107, 1130–1135 (2011).

    PubMed  Google Scholar 

  151. Chowriappa, A. J. et al. Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score. J. Surg. Res. 185, 561–569 (2013).

    PubMed  Google Scholar 

  152. Raza, S. J. et al. Construct validation of the key components of Fundamental Skills of Robotic Surgery (FSRS) curriculum—a multi-institution prospective study. J. Surg. Educ. 71, 316–324 (2014).

    PubMed  Google Scholar 

  153. Stegemann, A. P. et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology 81, 767–774 (2013).

    PubMed  Google Scholar 

  154. Whittaker, G. et al. Validation of the RobotiX Mentor Robotic Surgery Simulator. J. Endourol. 30, 338–346 (2016).

    PubMed  Google Scholar 

  155. Gavazzi, A. et al. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot). Ann. R. Coll. Surg. Engl. 93, 152–156 (2011).

    PubMed  PubMed Central  Google Scholar 

  156. Balasubramanian, K., Kalsi, P., Greenough, C. G. & Kuskoor Seetharam, M. P. Reliability of clinical assessment in diagnosing cauda equina syndrome. Br. J. Neurosurg. 24, 383–386 (2010).

    PubMed  Google Scholar 

  157. van der Meijden, O. A., Broeders, I. A. & Schijven, M. P. The SEP “robot”: a valid virtual reality robotic simulator for the Da Vinci Surgical System? Surg. Technol. Int. 19, 51–58 (2010).

    CAS  PubMed  Google Scholar 

  158. McDonough, P. S., Tausch, T. J., Peterson, A. C. & Brand, T. C. Initial validation of the ProMIS surgical simulator as an objective measure of robotic task performance. J. Robot. Surg. 5, 195–199 (2011).

    PubMed  Google Scholar 

  159. Chandra, V. et al. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery 147, 830–839 (2010).

    PubMed  Google Scholar 

  160. Ramos, P. et al. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 113, 836–842 (2014).

    PubMed  Google Scholar 

  161. Hung, A. J., Shah, S. H., Dalag, L., Shin, D. & Gill, I. S. development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J. Urol. 194, 520–526 (2015).

    PubMed  Google Scholar 

  162. Chowriappa, A. et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 115, 336–345 (2015).

    PubMed  Google Scholar 

  163. Goh, A., Joseph, R., O'Malley, M., Miles, B. & Dunkin, B. Development and validation of inanimate tasks for robotic surgical skills assessment and training. J. Urol. 183, e516 (2010).

    Google Scholar 

  164. Ghazi, A., Stone, J., Candela, B., Richards, M. & Joseph, J. Simulated inanimate model for physical learning experience (simple) for robotic partial nephrectomy using a 3d printed kidney model. J. Urol. 193, e778 (2015).

    Google Scholar 

  165. Candela, B. et al. Concurrent validity of a simulated inanimate model for physical learning experience in partial nephrectomy (SIMPLE-PN). J. Urol. 195, e220 (2016).

    Google Scholar 

  166. Maddox, M. et al. Resectable physical 3d models utilizing 3d printer technology for robotic partial nephrectomy. J. Urol. 193, e492 (2015).

    Google Scholar 

  167. Hung, A. J. et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 110, 870–874 (2012).

    PubMed  Google Scholar 

  168. Alemozaffar, M. et al. Validation of a novel, tissue-based simulator for robot-assisted radical prostatectomy. J. Endourol. 28, 995–1000 (2014).

    PubMed  Google Scholar 

  169. Volpe, A. et al. Pilot Validation Study of the European Association of Urology Robotic Training Curriculum. Eur. Urol.,68, 292–299 (2015).

    PubMed  Google Scholar 

  170. Novara, G. et al. Validation of the European Association of Urology Robotic Training Curriculum: Pilot study II. Eur. Urol. Suppl. 14, e193 (2015).

    Google Scholar 

  171. Raison, N., Ahmed, K., Aydin, A., Khan, M. S. & Dasgupta, P. A. Novel Cadaveric Robotic Training Programme. J. Endourol 29, A74 (2015).

    Google Scholar 

  172. Singal, A., Halverson, A., Rooney, D. M., Davis, L. M. & Kielb, S. J. A validated low-cost training model for suprapubic catheter insertion. Urology 85, 23–26 (2015).

    PubMed  Google Scholar 

  173. Hossack, T., Chris, B. B., Beer, J. & Thompson, G. A cost-effective, easily reproducible, suprapubic catheter insertion simulation training model. Urology 82, 955–958 (2013).

    PubMed  Google Scholar 

  174. Shergill, I. S., Shaikh, T., Arya, M. & Junaid, I. A training model for suprapubic catheter insertion: the UroEmerge suprapubic catheter model. Urology 72, 196–197 (2008).

    PubMed  Google Scholar 

  175. Parnham, A., Campain, N., Biyani, C. S., Muneer, A. & Venn, S. Validation of a reusable model for simulation training of adult circumcision. Bull. R. Coll. Surg. Engl. 97, 383–385 (2015).

    Google Scholar 

  176. Abdulmajed, M. I., Thomas, M. & Shergill, I. S. A new training model for adult circumcision. J. Surg. Educ. 69, 447–448 (2012).

    PubMed  Google Scholar 

  177. Pathak, R., Alford, S. & Igel, T. Mp23-07 vasectomy simulation module: didactic, audio-visual, and live-simulation experience. J. Urol. 193, e269 (2015).

    Google Scholar 

  178. Park, S., Fahey, N., Wind, A. & Farhat, O. Mp23-18 face and content validation of a vasectomy simulator. J. Urol. 193, e274 http://dx.doi.org/10.1016/j.juro.2015.02.1261 (2015).

    Google Scholar 

  179. Cabello, R. et al. An Experimental Model for Training in Renal Transplantation Surgery With Human Cadavers Preserved Using W. Thiel's Embalming Technique. J. Surg. Educ., http://dx.doi.org/10.1016/j.jsurg.2014.10.002 (2014).

  180. Brunckhorst, O., Khan, M. S., Dasgupta, P. & Ahmed, K. Effective non-technical skills are imperative to robot-assisted surgery. BJU Int. 116, 842–844 (2015).

    PubMed  Google Scholar 

  181. Brunckhorst, O. et al. Simulation-based ureteroscopy skills training curriculum with integration of technical and non-technical skills: a randomised controlled trial. Surg. Endosc. 29, 2728–2735 (2015).

    PubMed  Google Scholar 

  182. Brunckhorst, O. et al. The relationship between technical and nontechnical skills within a simulation-based ureteroscopy training environment. J. Surg. Educ. 72, 1039–1044 (2015).

    PubMed  Google Scholar 

  183. Brewin, J. et al. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology. BJU Int. 116, 156–162 (2015).

    PubMed  Google Scholar 

  184. Xu, S., Perez, M., Perrenot, C., Hubert, N. & Hubert, J. Face, content, construct, and concurrent validity of a novel robotic surgery patient-side simulator: the Xperience Team Trainer. Surg. Endosc. http://dx.doi.org/10.1007/s00464-015-4607-x (2015).

  185. Tjiam, I. M. et al. Program for laparoscopic urologic skills: a newly developed and validated educational program. Urology 79, 815–820 (2012).

    PubMed  Google Scholar 

  186. Tjiam, I. M. et al. Program for laparoscopic urological skills assessment: setting certification standards for residents. Minim. Invasive Ther. Allied Technol. 22, 26–32 (2013).

    PubMed  Google Scholar 

  187. Sweet, R. M. et al. Introduction and validation of the American Urological Association Basic Laparoscopic Urologic Surgery skills curriculum. J. Endourol. 26, 190–196 (2012).

    PubMed  Google Scholar 

  188. Brinkman, W. M. et al. Results of the European Basic Laparoscopic Urological Skills examination. Eur. Urol. 65, 490–496 (2014).

    PubMed  Google Scholar 

  189. Volpe, A. et al. Pilot Validation Study of the European Association of Urology Robotic Training Curriculum. Eur. Urol. 68, 292–299 (2015).

    PubMed  Google Scholar 

  190. Youssef, R. F. et al. Applications of three-dimensional printing technology in urological practice. BJU Int. 116, 697–702 (2015).

    PubMed  Google Scholar 

  191. Makiyama, K. et al. Development of a patient-specific simulator for laparoscopic renal surgery. Int. J. Urol. 19, 829–835 (2012).

    PubMed  Google Scholar 

  192. Yamanaka, H. et al. Preparation for pyeloplasty for ureteropelvic junction obstruction using a patient-specific laparoscopic simulator: a case report. J. Med. Case Rep. 6, 338 (2012).

    PubMed  PubMed Central  Google Scholar 

  193. General Medical Council. The Curriculum for Urological Training - Years 1–7 (GMC, 2008).

  194. Joint Committee on Surgical Training. Higher Surgical Training in Urology - A Guide for Trainers and Trainees in the U. K and Ireland, (JMC, 2003).

  195. Aydin, A., Shafi, A. M., Khan, M. S., Dasgupta, P. & Ahmed, K. Current Status of Simulation and Training Models in Urological Surgery: A Systematic Review. J. Urol. http://dx.doi.org/10.1016/j.juro.2016.01.131 (2016).

  196. Blaschko, S. D. et al. Coordinated multiple cadaver use for minimally invasive surgical training. JSLS 11, 403–407 (2007).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.A. and N.R. researched data for the article and wrote the manuscript. All authors contributed to discussions of content and reviewed or edited the article before submission.

Corresponding author

Correspondence to Prokar Dasgupta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Full immersion simulation

An inflatable low-fidelity and highly immersive operating room environment utilised for technical and nontechnical skills training.

High-fidelity operating room simulation

Simulation-based technical and nontechnical skills training in a dedicated high-fidelity operating room.

Acceptability

The extent to which a training tool or assessment procedure is accepted by the subjects involved in the assessment.

Educational impact

The extent to which test results and feedback contribute to improve the learning strategy on behalf of the trainer and the trainee

Cost effectiveness

The extent to which a training and assessment tool provides maximum value for money.

Crisis resource management training

(CRM training). Simulation training to enhance cognitive, interpersonal, communication and team-working skills during emergency scenarios.

Feasibility

The extent to which a training and assessment process is capable of being carried out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, A., Raison, N., Khan, M. et al. Simulation-based training and assessment in urological surgery. Nat Rev Urol 13, 503–519 (2016). https://doi.org/10.1038/nrurol.2016.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.147

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing