[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteome survey reveals modularity of the yeast cell machinery

Abstract

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synopsis of the genome-wide screen for complexes and data analysis.
Figure 2: Evidence supporting complex organization.
Figure 3: Architecture and modularity of complexes.
Figure 4: Modularity of the yeast cellular machinery.
Figure 5: Phenotypic data mapped to complexes.

Similar content being viewed by others

References

  1. Hood, L., Heath, J. R., Phelps, M. E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998)

    Article  CAS  Google Scholar 

  3. Goh, C. S., Milburn, D. & Gerstein, M. Conformational changes associated with protein–protein interactions. Curr. Opin. Struct. Biol. 14, 104–109 (2004)

    Article  CAS  Google Scholar 

  4. Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002)

    Article  CAS  Google Scholar 

  5. Edwards, A. M. et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 18, 529–536 (2002)

    Article  CAS  Google Scholar 

  6. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001)

    Article  CAS  Google Scholar 

  7. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999)

    Article  CAS  Google Scholar 

  8. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biol. 6, 97–105 (2004)

    Article  CAS  Google Scholar 

  11. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Aloy, P. et al. Structure-based assembly of protein complexes in yeast. Science 303, 2026–2029 (2004)

    Article  ADS  CAS  Google Scholar 

  15. de Lichtenberg, U., Jensen, L. J., Brunak, S. & Bork, P. Dynamic complex formation during the yeast cell cycle. Science 307, 724–727 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nature Biotechnol. 23, 561–566 (2005)

    Article  CAS  Google Scholar 

  17. Mewes, H. W. et al. MIPS: A database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002)

    Article  CAS  Google Scholar 

  18. Kumar, A. et al. An integrated approach for finding overlooked genes in yeast. Nature Biotechnol. 20, 58–63 (2002)

    Article  CAS  Google Scholar 

  19. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001)

    Article  CAS  Google Scholar 

  22. Mewes, H. W. et al. MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 32, D41–D44 (2004)

    Article  CAS  Google Scholar 

  23. Liou, A. K. & Willison, K. R. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J. 16, 4311–4316 (1997)

    Article  CAS  Google Scholar 

  24. Kraynack, B. A. et al. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 16, 3963–3977 (2005)

    Article  CAS  Google Scholar 

  25. Kao, L. R., Peterson, J., Ji, R., Bender, L. & Bender, A. Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 168–178 (1996)

    Article  CAS  Google Scholar 

  26. Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  27. Dezso, Z., Oltvai, Z. N. & Barabasi, A. L. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res. 13, 2450–2454 (2003)

    Article  Google Scholar 

  28. Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459–469 (2005)

    Article  CAS  Google Scholar 

  29. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Fortes, P. et al. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol. Cell 6, 191–196 (2000)

    Article  CAS  Google Scholar 

  31. McKendrick, L., Thompson, E., Ferreira, J., Morley, S. J. & Lewis, J. D. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap. Mol. Cell. Biol. 21, 3632–3641 (2001)

    Article  CAS  Google Scholar 

  32. Jenkins, G. M. & Hannun, Y. A. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J. Biol. Chem. 276, 8574–8581 (2001)

    Article  CAS  Google Scholar 

  33. Sehnke, P. C. & Ferl, R. J. Plant 14-3-3s: Omnipotent metabolic phosphopartners? Sci. STKE 2000, PE1 (2000) (doi:10.1126/stke.2000.56.pe1)

    Article  CAS  Google Scholar 

  34. Pozuelo Rubio, M. et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem. J. 379, 395–408 (2004)

    Article  Google Scholar 

  35. Winstall, E., Sadowski, M., Kuhn, U., Wahle, E. & Sachs, A. B. The Saccharomyces cerevisiae RNA-binding protein Rbp29 functions in cytoplasmic mRNA metabolism. J. Biol. Chem. 275, 21817–21826 (2000)

    Article  CAS  Google Scholar 

  36. Shi, Y. & Shi, Y. Metabolic enzymes and coenzymes in transcription—a direct link between metabolism and transcription? Trends Genet. 20, 445–452 (2004)

    Article  CAS  Google Scholar 

  37. Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R. & Church, G. M. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol. Syst. Biol. published online 29 March 2005 (doi:10.1038/msb4100004).

  39. Said, M. R., Begley, T. J., Oppenheim, A. V., Lauffenburger, D. A. & Samson, L. D. Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 18006–18011 (2004)

    Article  ADS  CAS  Google Scholar 

  40. Bader, G. D. & Hogue, C. W. Analyzing yeast protein–protein interaction data obtained from different sources. Nature Biotechnol. 20, 991–997 (2002)

    Article  CAS  Google Scholar 

  41. Subramanian, S., Woolford, C. A. & Jones, E. W. The Sec1/Munc18 protein, Vps33p, functions at the endosome and the vacuole of Saccharomyces cerevisiae. Mol. Biol. Cell 15, 2593–2605 (2004)

    Article  CAS  Google Scholar 

  42. Friesen, H., Colwill, K., Robertson, K., Schub, O. & Andrews, B. Interaction of the Saccharomyces cerevisiae cortical actin patch protein Rvs167p with proteins involved in ER to golgi vesicle trafficking. Genetics 170, 555–568 (2005)

    Article  CAS  Google Scholar 

  43. Ross, J., Reid, G. A. & Dawes, I. W. The nucleotide sequence of the LPD1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J. Gen. Microbiol. 134, 1131–1139 (1988)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Cohen, S. Artavanis-Tsakonas, B. Seraphin and L. Serrano for support and suggestions throughout the work, and F. Weisbrodt for assistance with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert B. Russell or Giulio Superti-Furga.

Ethics declarations

Competing interests

Purification and complex data have been deposited at the IntAct database (http://www.ebi.ac.uk/intact/) with accession numbers EBI-768904 (purifications) and EBI-765905 (author inferred complexes). The data, including the MS protein identifications, are accessible at http://yeast-complexes.embl.de, and the yeast strains are available from Euroscarf (http://web.uni-frankfurt.de/fb15/mikro/euroscarf/col_index.html). Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Data and Supplementary Methods, including a detailed description of the screen for protein complexes with Supplementary Data on the proteome coverage. There is also a detailed description of the biochemical, mass spectrometry and bioinformatics methods. This file also contains Supplementary Figures 1–9 as supports to the points described above. (PDF 1196 kb)

Supplementary Table 1

List of all purifications and proteins retrieved. (PDF 344 kb)

Supplementary Table 2

List of all protein complexes. (PDF 202 kb)

Supplementary Table 3

List of all protein modules. (PDF 64 kb)

Supplementary Table 4

List of protein complexes purified only once and producing a signal too weak to be automatically deduced. (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavin, AC., Aloy, P., Grandi, P. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006). https://doi.org/10.1038/nature04532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing